Reputation: 104
I have a dataframe with the following initialization and I want to find if the values in column 'a' are present in column 'b'. Then, if the value is present, I want the sum of all the corresponding values of column 'c'.
NA
df = pd.DataFrame({'a': [1,2,3, 1, 4, 1, 2],
'b': [1,5,1, 2, 3, 1, 3],
'c': [10,20,40, 50, 60, 70, 100]})
Sample result is in the image link below:
Upvotes: 1
Views: 129
Reputation: 2757
df[['a','b']].join(df.groupby('b').c.sum(),on='a').fillna(0, downcast='infer')
or
df.groupby('b').c.sum().reindex(df.a,fill_value=0).reset_index().assign(b=df.b).sort_index(axis=1)
or
df.assign(c = df.groupby('b').c.sum().reindex(df.a, fill_value=0).reset_index(drop=True))
Upvotes: 1
Reputation: 570
This will sum the values for column c for each value in column b, as long as the value in b exists in a.
import pandas as pd
df = pd.DataFrame({'a': [1,2,3, 1, 4, 1, 2],
'b': [1,5,1, 2, 3, 1, 3],
'c': [10,20,40, 50, 60, 70, 100]})
new_df = df[['a']].drop_duplicates().merge(df[['b', 'c']], left_on = 'a', right_on = 'b', how = 'left').groupby('a', as_index = False)['c'].sum()
Upvotes: 0
Reputation: 2222
Take a look at the following one-liner :D
df[["a"]].merge(df.groupby("b").c.sum().reset_index().rename(columns={"b":"a"}), how="left").fillna(0)
Upvotes: 0