Reputation: 121
I have a df with Temperature and Humidity readings in 10-minute interval like:
Time
1/2/2017 13:00
1/2/2017 13:10
1/2/2017 13:20
1/2/2017 13:30
1/2/2017 13:40
1/2/2017 13:50
1/2/2017 14:00
1/2/2017 14:10
1/2/2017 14:20
I want to convert the df to hourly by taking the average within an hour:
Time
1/2/2017 13:00
1/2/2017 14:00
I tried groupby after converting to datetime:
times = pd.to_datetime(df.Time)
df.groupby([times.hour, times.minute])
I got the error: AttributeError: 'Series' object has no attribute 'hour'
I tried
df.groupby(pd.DatetimeIndex(df['Time']).hour).mean()
but this grouped everything based on 24 hours of the day.
Upvotes: 0
Views: 1477
Reputation: 36624
You can do it as following:
import pandas as pd
import numpy as np
dates = ['1/2/2017 13:00', '1/2/2017 13:10', '1/2/2017 13:20',
'1/2/2017 13:30', '1/2/2017 13:40', '1/2/2017 13:50',
'1/2/2017 14:00', '1/2/2017 14:10', '1/2/2017 14:20']
numbers = np.random.randint(0, 11, 9)
df = pd.DataFrame(numbers, index=dates)
df
1/2/2017 13:00 5
1/2/2017 13:10 8
1/2/2017 13:20 10
1/2/2017 13:30 1
1/2/2017 13:40 6
1/2/2017 13:50 7
1/2/2017 14:00 10
1/2/2017 14:10 7
1/2/2017 14:20 8
times = pd.to_datetime(df.index)
df.groupby(times.hour).mean()
13 6.166667
14 8.333333
Here 13 and 14 represent the hourly aggregate, i.e., mean of 13h, mean of 14h.
Upvotes: 0