Reputation: 1428
I have a DF with structure as follows:
traffic_group app_id key category factors
0 desktop app1 CI html 16.618628
1 desktop app1 CI xhr 35.497082
2 desktop app1 IP html 18.294468
3 desktop app1 IP xhr 30.422464
4 desktop app2 CI html 11.028240
5 desktop app2 CI json 33.548279
6 mobile app1 IP html 12.808367
7 mobile app1 IP image 14.410633
I need to output it to a json of the following structure:
{ "desktop": {
app1: [ {
"key": "CI",
"threshold: 1,
"window": 60,
"factors: {
"html" : 16.618628
"xhr" : 35.497082
}
}, {
"key": "IP",
"threshold: 1,
"window": 60,
"factors: {
"html" : 18.294468
"xhr" : 30.422464
}
],
app2: [ {
"key": "CI",
"threshold: 1,
"window": 60,
"factors: {
"html" : 11.028240
"json" : 33.548279
}
}
},
"mobile": {
app1: [ {
"key": "IP",
"threshold: 1,
"window": 60,
"factors: {
"html" : 12.808367
"xhr" : 14.410633
}
]
}
}
The structure is admittedly convoluted.
I've considered the following previous answers and tried to mimic their logic to no avail:
Convert Pandas Dataframe to Custom Nested JSON
convert dataframe to nested json
Pandas Dataframe to Nested JSON
Any help is appreciated. Please don't just post a solution, but also explain your logic.
Upvotes: 0
Views: 426
Reputation: 92854
Use the following approach:
In [208]: d = {}
In [209]: grouped = df.groupby(['traffic_group', 'app_id', 'key']).agg(pd.Series.to_dict).to_dict(orient='index')
In [210]: for t, v in grouped.items():
...: traff_gr, app_id, key = t
...: inner_d = {"key": key, "threshold": 1, "window": 60, 'factors': dict(zip(v['category'].values(), v['f
...: actors'].values()))}
...: d.setdefault(traff_gr, {}).setdefault(app_id, []).append(inner_d)
...:
In [211]: d
Out[211]:
{'desktop': {'app1': [{'key': 'CI',
'threshold': 1,
'window': 60,
'factors': {'html': 16.618628, 'xhr': 35.497082}},
{'key': 'IP',
'threshold': 1,
'window': 60,
'factors': {'html': 18.294468, 'xhr': 30.422464}}],
'app2': [{'key': 'CI',
'threshold': 1,
'window': 60,
'factors': {'html': 11.02824, 'json': 33.548279}}]},
'mobile': {'app1': [{'key': 'IP',
'threshold': 1,
'window': 60,
'factors': {'html': 12.808367, 'image': 14.410632999999999}}]}}
Upvotes: 0
Reputation: 444
I don't see any "threshold" and "window" keys of the nested dictionaries in the input. Let's assume they have fixed values. Based on your output, it seems like for every triplet (traffic_group, app_id, key) you would like to create (in general) a different nested dictionary. Therefore, we need an initial groupby operation using these three keys. For each group we create the nested dictionary:
def create_nested_dicts(df):
return {'key': df['key'].unique()[0], 'threshold': 1, 'window': 60, 'factors': dict(zip(df['category'], df['factors']))}
df = df.groupby(['traffic_group', 'app_id', 'key']).apply(create_nested_dicts)
The next step is to combine rows into lists for each (traffic_group, app_id) doublet and return them as a dict:
df = df.groupby(['traffic_group', 'app_id']).apply(lambda df: df.tolist())
The final step is to convert the df
into your output. There various ways of doing it. A simple one is the following:
df = df.reset_index().groupby('traffic_group').apply(lambda df: df.values)
output = dict(zip(df.index, [{app_id: val for _, app_id, val in vals} for vals in df.values]))
Upvotes: 1
Reputation: 1428
Well, I've solved it the "old-fashioned" way. Posting my solution for anyone who may need it in the future. Nevertheless, if someone is able to do it using pandas I'd love to see it.
json_output = {}
for traffic_group in sorted_df.traffic_group.unique():
json_output[traffic_group] = {}
for app_id in sorted_df[sorted_df.traffic_group == traffic_group].app_id.unique():
json_output[traffic_group][app_id] = []
for key in sorted_df[(sorted_df.traffic_group == traffic_group) &
(sorted_df.app_id == app_id)].key.unique():
inner_dict = {"key" : key, "threshold" : 1, "window" : 60, "factors" : {}}
for category in sorted_df[(sorted_df.traffic_group == traffic_group) &
(sorted_df.app_id == app_id) &
(sorted_df.key == key)].category.unique():
value = sorted_df[(sorted_df.traffic_group == traffic_group) &
(sorted_df.app_id == app_id) &
(sorted_df.key == key) &
(sorted_df.category == category)].factors
inner_dict["factors"][category] = value.iloc[0]
json_output[traffic_group][app_id].append(inner_dict)
Upvotes: 0