Reputation: 568
Having input dataframe:
x_1 x_2
0 0.0 0.0
1 1.0 0.0
2 2.0 0.2
3 2.5 1.5
4 1.5 2.0
5 -2.0 -2.0
and additional dataframe as follows:
index x_1_x x_2_x x_1_y x_2_y value dist dist_rank
0 0 0.0 0.0 0.1 0.1 5.0 0.141421 2.0
4 0 0.0 0.0 1.5 1.0 -2.0 1.802776 3.0
5 0 0.0 0.0 0.0 0.0 3.0 0.000000 1.0
9 1 1.0 0.0 0.1 0.1 5.0 0.905539 1.0
11 1 1.0 0.0 2.0 0.4 3.0 1.077033 3.0
14 1 1.0 0.0 0.0 0.0 3.0 1.000000 2.0
18 2 2.0 0.2 0.1 0.1 5.0 1.902630 3.0
20 2 2.0 0.2 2.0 0.4 3.0 0.200000 1.0
22 2 2.0 0.2 1.5 1.0 -2.0 0.943398 2.0
29 3 2.5 1.5 2.0 0.4 3.0 1.208305 3.0
30 3 2.5 1.5 2.5 2.5 4.0 1.000000 1.0
31 3 2.5 1.5 1.5 1.0 -2.0 1.118034 2.0
38 4 1.5 2.0 2.0 0.4 3.0 1.676305 3.0
39 4 1.5 2.0 2.5 2.5 4.0 1.118034 2.0
40 4 1.5 2.0 1.5 1.0 -2.0 1.000000 1.0
45 5 -2.0 -2.0 0.1 0.1 5.0 2.969848 2.0
46 5 -2.0 -2.0 1.0 -2.0 6.0 3.000000 3.0
50 5 -2.0 -2.0 0.0 0.0 3.0 2.828427 1.0
I want to create new columns in input dataframe, basing on additional dataframe with respect to dist_rank. It should extract x_1_y, x_2_y and value for each row, with respect to index and dist_rank so my expected output is following:
I tried following lines:
df['value_dist_rank1']=result.loc[result['dist_rank']==1.0, 'value']
df['value_dist_rank1 ']=result[result['dist_rank']==1.0]['value']
but both gave the same output:
x_1 x_2 value_dist_rank1
0 0.0 0.0 NaN
1 1.0 0.0 NaN
2 2.0 0.2 NaN
3 2.5 1.5 NaN
4 1.5 2.0 NaN
5 -2.0 -2.0 3.0
Upvotes: 1
Views: 73
Reputation: 3331
Here is a way to do it :
(For the sake of clarity I consider the input df as df1
and the additional df as df2
)
# First we goupby df2 by index to get all the column information of each index on one line
df2 = df2.groupby('index').agg(lambda x: list(x)).reset_index()
# Then we explode each column into three columns since there is always three columns for each index
columns = ['dist_rank', 'value', 'x_1_y', 'x_2_y']
column_to_add = ['value', 'x_1_y', 'x_2_y']
for index, row in df2.iterrows():
for i in range(3):
column_names = ["{}_dist_rank{}".format(x, row.dist_rank[i])[:-2] for x in column_to_add]
values = [row[x][i] for x in column_to_add]
for column, value in zip(column_names, values):
df2.loc[index, column] = value
# We drop the columns that are not useful :
df2.drop(columns=columns+['dist', 'x_1_x', 'x_2_x'], inplace = True)
# Finally we merge the modified df with our initial dataframe :
result = df1.merge(df2, left_index=True, right_on='index', how='left')
Output :
x_1 x_2 index value_dist_rank2 x_1_y_dist_rank2 x_2_y_dist_rank2 \
0 0.0 0.0 0 5.0 0.1 0.1
1 1.0 0.0 1 3.0 0.0 0.0
2 2.0 0.2 2 -2.0 1.5 1.0
3 2.5 1.5 3 -2.0 1.5 1.0
4 1.5 2.0 4 4.0 2.5 2.5
5 -2.0 -2.0 5 5.0 0.1 0.1
value_dist_rank3 x_1_y_dist_rank3 x_2_y_dist_rank3 value_dist_rank1 \
0 -2.0 1.5 1.0 3.0
1 3.0 2.0 0.4 5.0
2 5.0 0.1 0.1 3.0
3 3.0 2.0 0.4 4.0
4 3.0 2.0 0.4 -2.0
5 6.0 1.0 -2.0 3.0
x_1_y_dist_rank1 x_2_y_dist_rank1
0 0.0 0.0
1 0.1 0.1
2 2.0 0.4
3 2.5 2.5
4 1.5 1.0
5 0.0 0.0
Upvotes: 1