Reputation: 13078
How can I render a Pandas df where one of the columns' style.bar.color
property is computed based on some condition?
Example:
df.style.bar(subset=['before', 'after'], color='#ff781c', vmin=0.0, vmax=1.0)
Instead of having both columns highlight with #ff781c
, I'd like one of the columns (df['before']
) to remain that same constant color, and the other column (df['after']
) to be computed as:
def compute_color(row):
if row['after'] >= row['before']:
return 'red'
else:
return 'green
Upvotes: 3
Views: 5726
Reputation: 41
Explicitly color each cell in column.
rows = 10
indx = list(df.index)[-rows:] # indices of the last 10 rows
# Colormap for the last 10 rows in a Column
last10 = df['Column'][-rows:] # values to color
colors = [color_map_color(e, cmap_name='autumn_r', vmin=100, vmax=1000) for e in last10] # colors
values = [pd.IndexSlice[indx[i], 'Column'] for i in range(rows)] # for .bar subset
html = (df.style
.bar(subset=values[0], color=colors[0], vmax=1000, vmin=0, align='left', width=100)
.bar(subset=values[1], color=colors[1], vmax=1000, vmin=0, align='left', width=100)
.bar(subset=values[2], color=colors[2], vmax=1000, vmin=0, align='left', width=100)
)
html
https://i.sstatic.net/FeUV0.jpg
Upvotes: 0
Reputation: 153460
One way to do is to use pd.IndexSlice
to create subset for df.style.bar
:
i_pos = pd.IndexSlice[df.loc[(df['after']>df['before'])].index, 'after']
i_neg = pd.IndexSlice[df.loc[~(df['after']>df['before'])].index, 'after']
df.style.bar(subset=['before'], color='#ff781c', vmin=0.0, vmax=1.0)\
.bar(subset=i_pos, color='green', vmin=0.0, vmax=1.0)\
.bar(subset=i_neg, color='red', vmin=0.0, vmax=1.0)
Output:
Upvotes: 9