Reputation: 2299
I would like your help to make more efficient (maybe, by vectorising) the Matlab code below. The code below does essentially the following: take a row vector A
; consider the maximum elements of such a row vector and let, for example, be i
and j
their positions; construct two columns vectors, the first with all zeros but a 1
positioned at i
, the second with all zeros but a 1
positioned at j
.
This is my attempt with loops, but it looks more complicated than needed.
clear
rng default
A=[3 2 3];
max_idx=ismember(A,max(A));
vertex=cell(size(A,2),1);
for j=1:size(max_idx,2)
if max_idx(j)>0
position=find(max_idx(j));
vertex_temp=zeros(size(A,2),1);
vertex_temp(position)=1;
vertex{j}=vertex_temp;
else
vertex{j}=[];
end
end
vertex=vertex(~cellfun('isempty',vertex));
Upvotes: 0
Views: 71
Reputation: 1
Is there a specific reason you want a cell array rather than a matrix?
If you can have it all in one vector:
A = [3 2 3]
B_rowvec = A == max(A)
B_colvec = B_rowvec'
If you need them separated into separate vectors:
A = [3 2 3]
Nmaxval = sum(A==max(A))
outmat = zeros(length(A),Nmaxval)
for i = 1:Nmaxval
outmat(find(A==max(A),i),i)=1;
end
outvec1 = outmat(:,1)
outvec2 = outmat(:,2)
Basically, the second input for find will specify which satisfactory instance of the first input you want.
so therefore
example = [ 1 2 3 1 2 3 1 2 3 ]
first = find(example == 1, 1) % returns 1
second = find(example == 1, 2) % returns 4
third = find(example == 1, 3) % returns 7
Upvotes: 0
Reputation: 58
If you really wanted to avoid a for loop, you could probably also use something like this:
A=[3 2 3];
max_idx = find(A==max(A));
outMat = zeros(numel(A), numel(max_idx));
outMat((0:(numel(max_idx)-1)) * numel(A) + max_idx) = 1;
then optionally, if you want them in separate cells rather than columns of a matrix:
outCell = mat2cell(outMat, numel(A), ones(1,numel(max_idx)))';
However, I think this might be less simple and readable than the existing answers.
Upvotes: 0
Reputation: 6863
Still using a for
loop, but more readable:
A = [3 2 3];
% find max indices
max_idx = find(A == max(A));
vertex = cell(numel(max_idx),1);
for k = 1:numel(max_idx)
vertex{k} = zeros(size(A,2),1); % init zeros
vertex{k}(max_idx(k)) = 1; % set value in vector to 1
end
Upvotes: 1