Reputation: 2602
Say I have a 100 element numpy array. I perform some calculation on a subset of this array - maybe 20 elements where some condition is met. Then I pick an index in this subset, how can I (efficiently) recover the index in the first array? I don't want to perform the calculation on all values in a because it is expensive, so I only want to perform it where it is required (where that condition is met).
Here is some pseudocode to demonstrate what I mean (the 'condition' here is the list comprehension):
a = np.arange(100) # size = 100
b = some_function(a[[i for i in range(0,100,5)]]) # size = 20
Index = np.argmax(b)
# Index gives the index of the maximum value in b,
# but what I really want is the index of the element
# in a
EDIT:
I wasn't being very clear, so I've provided a more full example. I hope this makes it more clear about what my goal is. I feel like there is some clever and efficient way to do this, without some loops or lookups.
CODE:
import numpy as np
def some_function(arr):
return arr*2.0
a = np.arange(100)*2. # size = 100
b = some_function(a[[i for i in range(0,100,5)]]) # size = 20
Index = np.argmax(b)
print Index
# Index gives the index of the maximum value in b, but what I really want is
# the index of the element in a
# In this specific case, Index will be 19. So b[19] is the largest value
# in b. Now, what I REALLY want is the index in a. In this case, that would
# 95 because some_function(a[95]) is what made the largest value in b.
print b[Index]
print some_function(a[95])
# It is important to note that I do NOT want to change a. I will perform
# several calculations on SOME values of a, then return the indices of 'a' where
# all calculations meet some condition.
Upvotes: 4
Views: 8393
Reputation: 6865
Does something like this work ?
mask = S == 1
ind_local = np.argmax(X[mask])
G = np.ravel_multi_index(np.where(mask), mask.shape)
ind_global = np.unravel_index(G[ind_local], mask.shape)
return ind_global
This returns the global index of the argmax
.
Upvotes: 1
Reputation:
Use a secondary array, a_index, which is just the indices of the elements of a, so a_index[3,5] = (3,5)
. Then you can get the original index as a_index[condition == True][Index]
.
If you can guarantee that b is a view on a, you can use the memory layout information of the two arrays to find a translation between b's and a's indices.
Upvotes: 1
Reputation: 43680
Normally you'd store the index based on the condition before you made any changes to the array. You use the index to make the changes.
If a
is your array:
>>> a = np.random.random((10,5))
>>> a
array([[ 0.22481885, 0.80522855, 0.1081426 , 0.42528799, 0.64471832],
[ 0.28044374, 0.16202575, 0.4023426 , 0.25480368, 0.87047212],
[ 0.84764143, 0.30580141, 0.16324907, 0.20751965, 0.15903343],
[ 0.55861168, 0.64368466, 0.67676172, 0.67871825, 0.01849056],
[ 0.90980614, 0.95897292, 0.15649259, 0.39134528, 0.96317126],
[ 0.20172827, 0.9815932 , 0.85661944, 0.23273944, 0.86819205],
[ 0.98363954, 0.00219531, 0.91348196, 0.38197302, 0.16002007],
[ 0.48069675, 0.46057327, 0.67085243, 0.05212357, 0.44870942],
[ 0.7031601 , 0.50889065, 0.30199446, 0.8022497 , 0.82347358],
[ 0.57058441, 0.38748261, 0.76947605, 0.48145936, 0.26650583]])
And b
is your subarray:
>>> b = a[2:4,2:7]
>>> b
array([[ 0.16324907, 0.20751965, 0.15903343],
[ 0.67676172, 0.67871825, 0.01849056]])
It can be shown that a
still owns the data in b
:
>>> b.base
array([[ 0.22481885, 0.80522855, 0.1081426 , 0.42528799, 0.64471832],
[ 0.28044374, 0.16202575, 0.4023426 , 0.25480368, 0.87047212],
[ 0.84764143, 0.30580141, 0.16324907, 0.20751965, 0.15903343],
[ 0.55861168, 0.64368466, 0.67676172, 0.67871825, 0.01849056],
[ 0.90980614, 0.95897292, 0.15649259, 0.39134528, 0.96317126],
[ 0.20172827, 0.9815932 , 0.85661944, 0.23273944, 0.86819205],
[ 0.98363954, 0.00219531, 0.91348196, 0.38197302, 0.16002007],
[ 0.48069675, 0.46057327, 0.67085243, 0.05212357, 0.44870942],
[ 0.7031601 , 0.50889065, 0.30199446, 0.8022497 , 0.82347358],
[ 0.57058441, 0.38748261, 0.76947605, 0.48145936, 0.26650583]])
You can make changes to both a
and b
in two ways:
>>> b+=1
>>> b
array([[ 1.16324907, 1.20751965, 1.15903343],
[ 1.67676172, 1.67871825, 1.01849056]])
>>> a
array([[ 0.22481885, 0.80522855, 0.1081426 , 0.42528799, 0.64471832],
[ 0.28044374, 0.16202575, 0.4023426 , 0.25480368, 0.87047212],
[ 0.84764143, 0.30580141, 1.16324907, 1.20751965, 1.15903343],
[ 0.55861168, 0.64368466, 1.67676172, 1.67871825, 1.01849056],
[ 0.90980614, 0.95897292, 0.15649259, 0.39134528, 0.96317126],
[ 0.20172827, 0.9815932 , 0.85661944, 0.23273944, 0.86819205],
[ 0.98363954, 0.00219531, 0.91348196, 0.38197302, 0.16002007],
[ 0.48069675, 0.46057327, 0.67085243, 0.05212357, 0.44870942],
[ 0.7031601 , 0.50889065, 0.30199446, 0.8022497 , 0.82347358],
[ 0.57058441, 0.38748261, 0.76947605, 0.48145936, 0.26650583]])
Or:
>>> a[2:4,2:7]+=1
>>> a
array([[ 0.22481885, 0.80522855, 0.1081426 , 0.42528799, 0.64471832],
[ 0.28044374, 0.16202575, 0.4023426 , 0.25480368, 0.87047212],
[ 0.84764143, 0.30580141, 1.16324907, 1.20751965, 1.15903343],
[ 0.55861168, 0.64368466, 1.67676172, 1.67871825, 1.01849056],
[ 0.90980614, 0.95897292, 0.15649259, 0.39134528, 0.96317126],
[ 0.20172827, 0.9815932 , 0.85661944, 0.23273944, 0.86819205],
[ 0.98363954, 0.00219531, 0.91348196, 0.38197302, 0.16002007],
[ 0.48069675, 0.46057327, 0.67085243, 0.05212357, 0.44870942],
[ 0.7031601 , 0.50889065, 0.30199446, 0.8022497 , 0.82347358],
[ 0.57058441, 0.38748261, 0.76947605, 0.48145936, 0.26650583]])
>>> b
array([[ 1.16324907, 1.20751965, 1.15903343],
[ 1.67676172, 1.67871825, 1.01849056]])
Both are equivalent and neither is more expensive than the other. Therefore as long as you retain the indices that created b
from a
, you can always view the changed data in the base array. Often it is not even necessary to create a subarray when doing operations on slices.
Edit
This assumes some_func
returns the indices in the subarray where some condition is true.
I think when a function returns indices and you only want to feed that function a subarray, you still need to store the indices of that subarray and use them to get the base array indices. For example:
>>> def some_func(a):
... return np.where(a>.8)
>>> a = np.random.random((10,4))
>>> a
array([[ 0.94495378, 0.55532342, 0.70112911, 0.4385163 ],
[ 0.12006191, 0.93091941, 0.85617421, 0.50429453],
[ 0.46246102, 0.89810859, 0.31841396, 0.56627419],
[ 0.79524739, 0.20768512, 0.39718061, 0.51593312],
[ 0.08526902, 0.56109783, 0.00560285, 0.18993636],
[ 0.77943988, 0.96168229, 0.10491335, 0.39681643],
[ 0.15817781, 0.17227806, 0.17493879, 0.93961027],
[ 0.05003535, 0.61873245, 0.55165992, 0.85543841],
[ 0.93542227, 0.68104872, 0.84750821, 0.34979704],
[ 0.06888627, 0.97947905, 0.08523711, 0.06184216]])
>>> i_off, j_off = 3,2
>>> b = a[i_off:,j_off:] #b
>>> i = some_func(b) #indicies in b
>>> i
(array([3, 4, 5]), array([1, 1, 0]))
>>> map(sum, zip(i,(i_off, j_off))) # indicies in a
[array([6, 7, 8]), array([3, 3, 2])]
Edit 2
This assumes some_func
returns a modified copy of the subarray b
.
Your example would look something like this:
import numpy as np
def some_function(arr):
return arr*2.0
a = np.arange(100)*2. # size = 100
idx = np.array(range(0,100,5))
b = some_function(a[idx]) # size = 20
b_idx = np.argmax(b)
a_idx = idx[b_idx] # indices in a translated from indices in b
print b_idx, a_idx
print b[b_idx], a[a_idx]
assert b[b_idx] == 2* a[a_idx] #true!
Upvotes: 0
Reputation: 96251
I am not sure if I understand your question. So, correct me if I am wrong.
Let's say you have something like
a = np.arange(100)
condition = (a % 5 == 0) & (a % 7 == 0)
b = a[condition]
index = np.argmax(b)
# The following should do what you want
a[condition][index]
Or if you don't want to work with masks:
a = np.arange(100)
b_indices = np.where(a % 5 == 0)
b = a[b_indices]
index = np.argmax(b)
# Get the value of 'a' corresponding to 'index'
a[b_indices][index]
Is this what you want?
Upvotes: 2