Reputation: 530
Consider the cajorls
from urca
package in R. This is an estimation of the VEC model given the a ca.jo
object. How can I by the output of cajorls
find the loading matrix alpha? Beta and the other parameters are simply I can't find the loading matrix.
This code below is taken from a textbook. Can you help identify the loading matrix by adding to this piece of code.
library(urca)
set.seed(1234)
n = 250
e1 = rnorm(n, 0, 0.5)
e2 = rnorm(n, 0, 0.5)
e3 = rnorm(n, 0, 0.5)
u1.ar1 = arima.sim(model = list(ar = 0.75), innov = e1, n = n)
u2.ar1 = arima.sim(model = list(ar = 0.3), innov = e2, n = n)
y3 = cumsum(e3)
y1 = 0.8*y3 + u1.ar1
y2 = -0.3*y3 + u2.ar1
y.mat = data.frame(y1,y2,y3)
plot(ts(y.mat))
vecm = ca.jo(y.mat)
jo.results = summary(vecm)
print(jo.results )
# reestimated
vecm.r2 = cajorls(vecm, r = 2)
summary(vecm.r2)
Maybe I should perform operations at mu own?
Upvotes: 0
Views: 431
Reputation: 506
I ran your skript and found this
print(jo.results)
######################
# Johansen-Procedure #
######################
Test type: maximal eigenvalue statistic (lambda max) , with linear trend
Eigenvalues (lambda):
[1] 0.285347239 0.127915199 0.006887218
Values of teststatistic and critical values of test:
test 10pct 5pct 1pct
r <= 2 | 1.71 6.50 8.18 11.65
r <= 1 | 33.94 12.91 14.90 19.19
r = 0 | 83.32 18.90 21.07 25.75
Eigenvectors, normalised to first column:
(These are the cointegration relations)
y1.l2 y2.l2 y3.l2
y1.l2 1.00000 1.00000000 1.0000000
y2.l2 -43.55337 -0.07138149 0.0528435
y3.l2 -13.58606 -0.73018096 -3.4121605
Weights W:
(This is the loading matrix)
y1.l2 y2.l2 y3.l2
y1.d -0.0007084809 -0.27450042 2.250788e-03
y2.d 0.0174625514 0.03598729 7.150656e-05
y3.d -0.0030589216 -0.02899838 3.086942e-03
Doesn't it say, Wieghts W: (This is the loading matrix)? Or do you look for something else?
Upvotes: 1