Reputation: 4855
I am trying to insert a 2D array of size [2, 2]
into a 3D array of size [2, 3, 2]
. For every page of the 3D array (axis=0), the position to insert the 2D array (read: row number) may be different. I tried to use the np.insert
function. However, I am struggling...
import numpy as np
arr = np.arange(12).reshape(2, 3, 2)
arr
array([[[ 0, 1],
[ 2, 3],
[ 4, 5]],
[[ 6, 7],
[ 8, 9],
[10, 11]]])
row_number_before_insertion = [1, 2]
val_to_insert = (np.ones(4) * 100).reshape(2,2)
arr_expanded = np.insert(arr, row_number_before_insertion , val_to_insert, axis=1)
arr_expanded
array([[[ 0, 1],
[100, 100],
[ 2, 3],
[100, 100],
[ 4, 5]],
[[ 6, 7],
[100, 100],
[ 8, 9],
[100, 100],
[ 10, 11]]])
I am actually looking for the following result:
arr_expanded
array([[[ 0, 1],
[100, 100],
[100, 100],
[ 2, 3],
[ 4, 5]],
[[ 6, 7],
[ 8, 9],
[100, 100],
[100, 100],
[ 10, 11]]])
Upvotes: 4
Views: 435
Reputation: 4855
Here's a solution using vstack
:
def insert_into_arr(arr, row_number_before_insertion, val_to_insert):
num_slices, num_rows, num_cols = arr.shape
arr_expanded = np.zeros((num_slices, num_rows + val_to_insert.shape[0], num_cols))
for i in range(num_slices):
if row_number_before_insertion[i] == 0:
arr_expanded[i, :, :] = np.vstack((val_to_insert, arr[i, :, :]))
else:
arr_expanded[i, :, :] = np.vstack((arr[i, 0:row_number_before_insertion[i], :], val_to_insert, arr[i, row_number_before_insertion [i]:, :]))
return arr_expanded
arr = np.arange(12).reshape(2, 3, 2)
row_number_before_insertion = [1, 2]
val_to_insert = (np.ones(4) * 100).reshape(2,2)
arr_expanded = insert_into_arr(arr, row_number_before_insertion, val_to_insert)
arr_expanded
array([[[ 0., 1.],
[ 100., 100.],
[ 100., 100.],
[ 2., 3.],
[ 4., 5.]],
[[ 6., 7.],
[ 8., 9.],
[ 100., 100.],
[ 100., 100.],
[ 10., 11.]]])
Upvotes: 0
Reputation: 221514
Here's one based on array-assignment and masking
-
from skimage.util.shape import view_as_windows
def insert_into_arr(arr, row_number_before_insertion, val_to_insert):
ma,na,ra = arr.shape
L = len(val_to_insert)
N = len(row_number_before_insertion)
out = np.zeros((ma,na+L,ra),dtype=arr.dtype)
mask = np.ones(out.shape, dtype=bool)
w = view_as_windows(out,(1,L,1))[...,0,:,0]
w[np.arange(N), row_number_before_insertion] = val_to_insert.T
wm = view_as_windows(mask,(1,L,1))[...,0,:,0]
wm[np.arange(N), row_number_before_insertion] = 0
out[mask] = arr.ravel()
return out
Sample run -
In [44]: arr
Out[44]:
array([[[ 0, 1],
[ 2, 3],
[ 4, 5]],
[[ 6, 7],
[ 8, 9],
[10, 11]]])
In [45]: row_number_before_insertion
Out[45]: array([1, 2])
In [46]: val_to_insert
Out[46]:
array([[784, 659],
[729, 292],
[935, 863]])
In [47]: insert_into_arr(arr, row_number_before_insertion, val_to_insert)
Out[47]:
array([[[ 0, 1],
[784, 659],
[729, 292],
[935, 863],
[ 2, 3],
[ 4, 5]],
[[ 6, 7],
[ 8, 9],
[784, 659],
[729, 292],
[935, 863],
[ 10, 11]]])
Another with repeat
and masking
-
def insert_into_arr_v2(arr, row_number_before_insertion, val_to_insert):
ma,na,ra = arr.shape
r = row_number_before_insertion
L = len(val_to_insert)
M = na+L
out = np.zeros((ma,na+L,ra),dtype=arr.dtype)
idx = ((r + M*np.arange(len(r)))[:,None] + np.arange(L)).ravel()
out.reshape(-1,ra)[idx] =np.repeat(val_to_insert[None],ma,axis=0).reshape(-1,ra)
mask = np.isin(np.arange(ma*(na+L)),idx, invert=True)
out.reshape(-1,ra)[mask] = arr.reshape(-1,ra)
return out
Upvotes: 1