Reputation: 348
I'm trying to join 2 dataframes. I will explain using my codes below. My apology because I don't know how to show table outputs, so please run the code and you will see what I mean.
Setup:
df1 = pd.DataFrame({'A': ['A2', 'A3', 'A6', 'A7'],
'B': ['B2', 'B3', 'B6', 'B7'],
'C': ['C2', 'C3', 'C6', 'C7']})
df2 = pd.DataFrame({'A_': ['A2', 'A3', 'A4'],
'B_': ['B2', 'B3', 'B4'],
'C_': ['C2', 'C3', 'C4']})
I tried the following method:
new_joined = pd.concat([df1, df2],axis=1,join='outer')
The output is not what i want. What I want is a joined df like this:
joined = pd.DataFrame({'A': ['A2', 'A3', 'A6', 'Nan','A7'],
'B': ['B2', 'B3', 'B6','Nan','B7'],
'C': ['C2', 'C3', 'C6','Nan','C7'],
'A_': ['A2', 'A3', 'Nan','A4','Nan'],
'B_': ['B2', 'B3', 'Nan','B4','Nan'],
'C_': ['C2', 'C3', 'Nan','C4','Nan']})
joined = joined[['A','B','C','A_','B_','C_']]
Basically, if a row of df1 doesn't match the other the other row of df2, I want that to be Nan, but the function I tried just put [A6,B6,C6] and [A4,B4,C4] on the same line. Please advise!
Upvotes: 2
Views: 2612
Reputation: 412
I think this is related to this question. You are looking for a full outer join. Using your example, here is the solution:
df1 = pd.DataFrame({'A': ['A2', 'A3', 'A6', 'A7'],
'B': ['B2', 'B3', 'B6', 'B7'],
'C': ['C2', 'C3', 'C6', 'C7']})
df2 = pd.DataFrame({'A_': ['A2', 'A3', 'A4'],
'B_': ['B2', 'B3', 'B4'],
'C_': ['C2', 'C3', 'C4']})
df1.merge(df2, how='outer', left_on=list(df1.columns), right_on=list(df2.columns))
which outputs
A B C A_ B_ C_
0 A2 B2 C2 A2 B2 C2
1 A3 B3 C3 A3 B3 C3
2 A6 B6 C6 NaN NaN NaN
3 A7 B7 C7 NaN NaN NaN
4 NaN NaN NaN A4 B4 C4
Upvotes: 0
Reputation: 2757
pd.concat
is not working because it aligns on indexes (row or column) rather than on arbitrary columns. You're probably looking form merge
,
df1.merge(df2,left_on=['A','B','C'],right_on=['A_','B_','C_'],how='outer')
Upvotes: 2