Reputation: 442
I am a relatively new user to Python and Airflow and am having a very difficult time getting spark-submit
to run in an Airflow task. My goal is to get the following DAG task to run successfully
from datetime import datetime, timedelta
from airflow import DAG
from airflow.contrib.operators.spark_submit_operator import SparkSubmitOperator
from airflow.operators.bash_operator import BashOperator
default_args = {
'owner': 'matthew',
'start_date': datetime(2019, 7, 8)
}
dag = DAG('CustomCreate_test2',
default_args=default_args,
schedule_interval=timedelta(days=1))
t3 = BashOperator(
task_id='run_test',
bash_command='spark-submit --class CLASSPATH.CustomCreate ~/IdeaProjects/custom-create-job/build/libs/custom-create.jar',
dag=dag
)
I know the problem lies with Airflow and not with the bash because when I run the command spark-submit --class CLASSPATH.CustomCreate ~/IdeaProjects/custom-create-job/build/libs/custom-create.jar
in the terminal it runs successfully.
I have been getting the following error from the Airflow logs
...
[2019-08-28 15:55:34,750] {bash_operator.py:132} INFO - Command exited with return code 1
[2019-08-28 15:55:34,764] {taskinstance.py:1047} ERROR - Bash command failed
Traceback (most recent call last):
File "/Users/matcordo2/.virtualenv/airflow/lib/python3.7/site-packages/airflow/models/taskinstance.py", line 922, in _run_raw_task
result = task_copy.execute(context=context)
File "/Users/matcordo2/.virtualenv/airflow/lib/python3.7/site-packages/airflow/operators/bash_operator.py", line 136, in execute
raise AirflowException("Bash command failed")
airflow.exceptions.AirflowException: Bash command failed
...
I have also tried working with the SparkSubmitOperator(...)
but have had no successful runs using it, I have only ever ended up with error logs like the following
...
[2019-08-28 15:54:49,749] {logging_mixin.py:95} INFO - [[34m2019-08-28 15:54:49,749[0m] {[34mspark_submit_hook.py:[0m427} INFO[0m - at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)[0m
[2019-08-28 15:54:49,803] {taskinstance.py:1047} ERROR - Cannot execute: ['spark-submit', '--master', 'yarn', '--num-executors', '2', '--total-executor-cores', '1', '--executor-cores', '1', '--executor-memory', '2g', '--driver-memory', '1g', '--name', 'CustomCreate', '--class', 'CLASSPATH.CustomCreate', '--verbose', '--queue', 'root.default', '--deploy-mode', 'cluster', '~/IdeaProjects/custom-create-job/build/libs/custom-create.jar']. Error code is: 1.
...
Is there something I have to do using SparkSubmitOperator(...)
before I can run the spark-submit ...
command in a BashOperator(...)
task?
Is there a way to run my spark-submit
command directly from the SparkSubmitOperator(...)
task?
Is there anything that I have to do to spark_default
in the Admin->Connections page of Airflow?
Is there anything that must be set in the Admin->Users page of Airflow? Is there anything that must be set to allow Airflow to run spark or run a jar file created by a specific user? If so, what/how?
Upvotes: 1
Views: 10691
Reputation: 71
Not sure if still relevant, but I solved a similar problem simply by using the absolute path to the file (full path without the '~'). Not sure why, maybe airflow consider 'home' as another place.
Upvotes: 0
Reputation: 442
I found a workaround that solved this problem.
Create a new ssh connection (or edit the default) like the one below in the Airflow Admin->Connection page Airflow SSH Connection Example
Below is a text version if you cannot see the image
Conn ID: ssh_connection
Conn Type: SSH
Host: HOST IP ADDRESS
Username: HOST USERNAME
Password: HOST PASSWORD
Port:
Extra: {"key_file": "/PATH TO HOME DIR/airflow/.ssh/id_rsa", "allow_host_key_change": "true", "no_host_key_check": "true"}
Then make the proper adjustments to your python script
from airflow import DAG
from airflow.contrib.operators.ssh_operator import SSHOperator
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta
default_args = {
'owner': 'matthew',
'start_date': datetime(2019, 8, 28)
}
dag = DAG('custom-create',
default_args=default_args,
schedule_interval=timedelta(days=1),
params={'project_source': '~/IdeaProjects/custom-create-job',
'spark_submit': '/usr/local/bin/spark-submit',
'classpath': 'CLASSPATH.CustomCreate',
'jar_file': 'build/libs/custom-create.jar'}
)
templated_bash_command = """
echo 'HOSTNAME: $HOSTNAME' #To check that you are properly connected to the host
cd {{ params.project_source }}
{{ params.spark_submit }} --class {{ classpath }} {{ jar_file }}
"""
t1 = SSHOperator(
task_id="SSH_task",
ssh_conn_id='ssh_connection',
command=templated_bash_command,
dag=dag
)
I hope this solution helps other people who may be running into a similar problem like I was.
Upvotes: 4
Reputation: 598
A similar question has already been answered - StackOverFlow Link
I guess the above link will help you.
In the future if you would like to implement the same thing on AWS EMR Or AZURE, then there you have an a beautiful way to schedule spark jobs - Airflow Documentation
An Example for the above - (AWS EMR)
<airflow_EMR_task> =cover_open(json.load(open(airflow_home+'/<tasks_json_containing_all_spark_configurations>')))
<airflow_EMR_task>['Job']['Name'] = <airflow_EMR_task>['Job']['Name'] + <'optional_postfix'>
airflow_swperformance_cpu_creator = EmrRunJobFlowOperator(
task_id='<task_id>',
job_flow_overrides= <airflow_EMR_task>['Job'],
aws_conn_id='aws_default',
emr_conn_id='emr_default',
retries=1,
dag=dag
)
And A Simple JSON would be - (the same json file as mentioned above )
{
"Job": {
"Name": "<task_name>",
"LogUri": "<task_log_uri>",
"ReleaseLabel": "emr-5.6.0",
"Applications": [
{
"Name": "Spark"
},
{
"Name": "Hive"
}
],
"Tags": [
{
"Key" : "<any_tag>",
"Value" : "<any_tag>"
},
{
"Key" : "<any tag>",
"Value": "<any_tag>"
},
{
"Key" : "<any_tag>",
"Value": "<any_tag value>"
}
],
"JobFlowRole": "EMR_EC2_DefaultRole_Stable",
"ServiceRole": "EMR_DefaultRole",
"VisibleToAllUsers": true,
"Configurations": [
{
"Classification": "spark-defaults",
"Properties": {
"spark.driver.extraJavaOptions":"-XX:+UseParallelGC -XX:+UseParallelOldGC -XX:CMSInitiatingOccupancyFraction=70 -XX:MaxHeapFreeRatio=70 -XX:+CMSClassUnloadingEnabled -XX:+ExitOnOutOfMemoryError -Dlog4j.configuration=log4j-custom.properties",
"spark.executor.extraJavaOptions":"-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+UseParallelGC -XX:+UseParallelOldGC -XX:CMSInitiatingOccupancyFraction=70 -XX:MaxHeapFreeRatio=70 -XX:+CMSClassUnloadingEnabled -XX:+ExitOnOutOfMemoryError -Dlog4j.configuration=log4j-custom.properties",
"spark.scheduler.mode": "FAIR",
"spark.eventLog.enabled": "true",
"spark.serializer": "org.apache.spark.serializer.KryoSerializer",
"spark.sql.orc.filterPushdown": "true",
"spark.dynamicAllocation.enabled": "false"
},
"Configurations": []
},
{
"Classification": "spark",
"Properties": {
"maximizeResourceAllocation": "true"
},
"Configurations": []
},
{
"Classification": "hive-site",
"Properties": {
"javax.jdo.option.ConnectionUserName": "<HIVE USERNAME IF ANY>",
"javax.jdo.option.ConnectionPassword": "<<hive_connection_password>>",
"javax.jdo.option.ConnectionURL": "<Hive_URL_IF_ANY"
},
"Configurations": []
},
{
"Classification": "emrfs-site",
"Properties": {
"fs.s3.serverSideEncryption.kms.keyId": "<<encryption_key>>",
"fs.s3.enableServerSideEncryption": "true"
},
"Configurations": []
},
{
"Classification":"spark-env",
"Configurations":[{
"Classification":"export",
"Configurations":[],
"Properties": {
"ANY_ENV_VARIABLE_REQUIRED_FOR_SPECIFIC_JOB",
"ANY_ENV_VARIABLE_REQUIRED_FOR_SPECIFIC_JOB",
"ANY_ENV_VARIABLE_REQUIRED_FOR_SPECIFIC_JOB",
"ANY_ENV_VARIABLE_REQUIRED_FOR_SPECIFIC_JOB",
"ANY_ENV_VARIABLE_REQUIRED_FOR_SPECIFIC_JOB"
"S3_BUCKET_NAME":"<S3_bucekt_naem_if_Required>"
}
}
]}
],
"Instances": {
"Ec2KeyName": "<ssh_key>",
"KeepJobFlowAliveWhenNoSteps": false,
"Ec2SubnetId": "<subnet>",
"EmrManagedSlaveSecurityGroup": "<security_group>",
"EmrManagedMasterSecurityGroup": "<security_group_parameter>",
"AdditionalSlaveSecurityGroups": [
"<self_explanatory>"
],
"AdditionalMasterSecurityGroups": [
"<self_explanatory>"
],
"InstanceGroups": [
{
"InstanceCount": 4,
"InstanceRole": "CORE",
"InstanceType": "r3.xlarge",
"Name": "Core instance group - 2"
},
{
"InstanceCount": 1,
"InstanceRole": "MASTER",
"InstanceType": "r3.xlarge",
"Name": "Master instance group - 1"
}
]
},
"BootstrapActions": [],
"Steps": [
{
"Name": "download-dependencies",
"HadoopJarStep": {
"Jar": "command-runner.jar",
"Args": [
"aws",
"s3",
"cp",
"<appropriate_s3_location>",
"/home/hadoop",
"--recursive"
],
"Properties": []
},
"ActionOnFailure": "TERMINATE_CLUSTER"
},
{
"Name": "run-script",
"HadoopJarStep": {
"Jar": "command-runner.jar",
"Args": [
"sudo",
"/bin/sh",
"/home/hadoop/pre-executor.sh"
],
"Properties": []
},
"ActionOnFailure": "TERMINATE_CLUSTER"
},
{
"Name": "spark-submit",
"HadoopJarStep": {
"Jar": "command-runner.jar",
"Args": [
"spark-submit",
"/home/hadoop/analytics-job.jar",
"--run-gold-job-only"
],
"Properties": []
},
"ActionOnFailure": "TERMINATE_CLUSTER"
}
]
}
}
And that will be all.
Upvotes: 0