Reputation: 71
I want to make a line chart by this code :
df = pd.DataFrame.from_dict({ 'sentencess' : sentencess, 'publishedAts' : publishedAts, 'hasil_sentimens' : hasil_sentimens })
df.to_csv('chart.csv')
df['publishedAts'] = pd.to_datetime(df['publishedAts'], errors='coerce')
by_day_sentiment = df.groupby([pd.Grouper(key='publishedAts',freq='D'),'hasil_sentimens']).size().unstack('hasil_sentimens')
sentiment_dict = by_day_sentiment.to_dict('dict')
and the output from sentiment_dict is
{'Negatif ': {Timestamp('2019-08-26 00:00:00', freq='D'): 2.0, Timestamp('2019-08-27 00:00:00', freq='D'): 4.0, Timestamp('2019-08-28 00:00:00', freq='D'): 2.0, Timestamp('2019-08-29 00:00:00', freq='D'): 3.0}, 'Netral ': {Timestamp('2019-08-26 00:00:00', freq='D'): 1.0, Timestamp('2019-08-27 00:00:00', freq='D'): 3.0, Timestamp('2019-08-28 00:00:00', freq='D'): 1.0, Timestamp('2019-08-29 00:00:00', freq='D'): 3.0}, 'Positif ': {Timestamp('2019-08-26 00:00:00', freq='D'): nan, Timestamp('2019-08-27 00:00:00', freq='D'): nan, Timestamp('2019-08-28 00:00:00', freq='D'): nan, Timestamp('2019-08-29 00:00:00', freq='D'): 1.0}}
From that sentiment_dict, how to make a new dict but the key (which is now datetime) is changed to a string?
Upvotes: 2
Views: 451
Reputation: 113
You can add this line before parsing datafrmae to dictionary:
by_day_sentiment = df.groupby([pd.Grouper(key='publishedAts',freq='D'),'hasil_sentimens']).size().unstack('hasil_sentimens')
by_day_sentiment['publishedAts'] = by_day_sentiment['publishedAts'].astype(object)
sentiment_dict = by_day_sentiment.to_dict('dict')
Upvotes: 0
Reputation: 187
To convert a DateTime object to a string you can use DateTime.strftime(FORMAT_STRING):
import datetime
x = datetime.datetime.now()
print(x.strftime("%H:%M:%S"))
You can try it here https://repl.it/repls/ImmaterialAlarmingGenre
You more information on FORMAT_STRING see: https://www.w3schools.com/python/python_datetime.asp
Upvotes: 2
Reputation: 82765
Use strftime('%Y-%m-%d %H:%M:%S')
Ex:
from pandas import Timestamp
from numpy import nan
data = {'Negatif ': {Timestamp('2019-08-26 00:00:00', freq='D'): 2.0, Timestamp('2019-08-27 00:00:00', freq='D'): 4.0, Timestamp('2019-08-28 00:00:00', freq='D'): 2.0, Timestamp('2019-08-29 00:00:00', freq='D'): 3.0}, 'Netral ': {Timestamp('2019-08-26 00:00:00', freq='D'): 1.0, Timestamp('2019-08-27 00:00:00', freq='D'): 3.0, Timestamp('2019-08-28 00:00:00', freq='D'): 1.0, Timestamp('2019-08-29 00:00:00', freq='D'): 3.0}, 'Positif ': {Timestamp('2019-08-26 00:00:00', freq='D'): nan, Timestamp('2019-08-27 00:00:00', freq='D'): nan, Timestamp('2019-08-28 00:00:00', freq='D'): nan, Timestamp('2019-08-29 00:00:00', freq='D'): 1.0}}
print({k: {m.strftime('%Y-%m-%d %H:%M:%S'): v for m, v in v.items()} for k, v in data.items()})
Output:
{'Negatif ': {'2019-08-26 00:00:00': 2.0,
'2019-08-27 00:00:00': 4.0,
'2019-08-28 00:00:00': 2.0,
'2019-08-29 00:00:00': 3.0},
'Netral ': {'2019-08-26 00:00:00': 1.0,
'2019-08-27 00:00:00': 3.0,
'2019-08-28 00:00:00': 1.0,
'2019-08-29 00:00:00': 3.0},
'Positif ': {'2019-08-26 00:00:00': nan,
'2019-08-27 00:00:00': nan,
'2019-08-28 00:00:00': nan,
'2019-08-29 00:00:00': 1.0}}
Upvotes: 2