Reputation: 3608
I am doing a PCA, and have 10 components. I would like to plot the first 3 components and color according to their group type.
from mpl_toolkits.mplot3d import Axes3D
df=pd.DataFrame(np.random.rand(30,20))
grp=round(pd.DataFrame(np.random.rand(30)*10),0)
df['grp']=grp
fig = plt.figure(figsize=(12, 9))
ax = Axes3D(fig)
y = df.iloc[:,1]
x = df.iloc[:,0]
z = df.iloc[:,2]
c = df['grp']
ax.scatter(x,y,z, c=c, cmap='coolwarm')
plt.title('First 3 Principal Components')
ax.set_ylabel('PC2')
ax.set_xlabel('PC1')
ax.set_zlabel('PC3')
plt.legend()
this works, but unfortunately does not show a legend, nor I believe all of the possible groups.
Upvotes: 6
Views: 22428
Reputation: 54340
Check out pandas groupby
, grouping you data by groups and plot your groups individually:
Tested in python 3.11.2
, pandas 2.0.1
, matplotlib 3.7.1
fig = plt.figure(figsize=(12, 9))
ax = fig.add_subplot(projection='3d')
for grp_name, grp_idx in df.groupby('grp').groups.items():
y = df.iloc[grp_idx,1]
x = df.iloc[grp_idx,0]
z = df.iloc[grp_idx,2]
ax.scatter(x, y, z, label=grp_name) # this way you can control color/marker/size of each group freely
ax.scatter(*df.iloc[grp_idx, [0, 1, 2]].T.values, label=grp_name) # if you want to do everything in one line, lol
ax.legend(bbox_to_anchor=(1, 0.5), loc='center left', frameon=False)
plt.show()
Upvotes: 8