Reputation: 1233
plain C have nice feature - void type pointers, which can be used as pointer to any data type.
But, assume I have following struct:
struct token {
int type;
void *value;
};
where value field may point to char array, or to int, or something else.
So when allocating new instance of this struct, I need:
1) allocate memory for this struct;
2) allocate memory for value and assign it to value field.
My question is - is there ways to declare "array of type void", which can be casted to any another type like void pointer?
All I want is to use "flexible member array" (described in 6.7.2.1 of C99 standard) with ability to casting to any type.
Something like this:
struct token {
int type;
void value[];
};
struct token *p = malloc(sizeof(struct token) + value_size);
memcpy(p->value, val, value_size);
...
char *ptr = token->value;
I suppose declaring token->value as char or int array and casting to needed type later will do this work, but can be very confusing for someone who will read this code later.
Upvotes: 17
Views: 54743
Reputation: 23
Array of type void is not supporting in c/c++. Example like:
int main() {
void alexa[]; // error: declaration of ‘alexa’ as array of void
return 0;
}
Array of void pointer is supported in c/c++. Example below:
int main(int argc, char argv*[])
{
void *alexa[100]; // Compiled successfully
return 0;
}
Upvotes: 0
Reputation: 481
Expanding on AShelly's answer you can do this;
/** A buffer structure containing count entries of the given size. */
typedef struct {
size_t size;
int count;
void *buf;
} buffer_t;
/** Allocate a new buffer_t with "count" entries of "size" size. */
buffer_t *buffer_new(size_t size, int count)
{
buffer_t *p = malloc(offsetof(buffer_t, buf) + count*size);
if (p) {
p->size = size;
p->count = count;
}
return p;
}
Note the use of "offsetof()" instead of "sizeof()" when allocating the memory to avoid wasting the "void *buf;" field size. The type of "buf" doesn't matter much, but using "void *" means it will align the "buf" field in the struct optimally for a pointer, adding padding before it if required. This usually gives better memory alignment for the entries, particularly if they are at least as big as a pointer.
Accessing the entries in the buffer looks like this;
/** Get a pointer to the i'th entry. */
void *buffer_get(buffer_t *t, int i)
{
return &t->buf + i * t->size;
}
Note the extra address-of operator to get the address of the "buf" field as the starting point for the allocated entry memory.
Upvotes: 2
Reputation: 13257
following structure can help you.
struct clib_object_t {
void* raw_data;
size_t size;
};
struct clib_object_t*
new_clib_object(void *inObject, size_t obj_size) {
struct clib_object_t* tmp = (struct clib_object_t*)malloc(sizeof(struct clib_object_t));
if ( ! tmp )
return (struct clib_object_t*)0;
tmp->size = obj_size;
tmp->raw_data = (void*)malloc(obj_size);
if ( !tmp->raw_data ) {
free ( tmp );
return (struct clib_object_t*)0;
}
memcpy ( tmp->raw_data, inObject, obj_size);
return tmp;
}
clib_error
get_raw_clib_object ( struct clib_object_t *inObject, void**elem) {
*elem = (void*)malloc(inObject->size);
if ( ! *elem )
return CLIB_ELEMENT_RETURN_ERROR;
memcpy ( *elem, inObject->raw_data, inObject->size );
return CLIB_ERROR_SUCCESS;
}
More Details : clibutils
Upvotes: 0
Reputation: 35520
You can't have an array of 'void' items, but you should be able to do something like what you want, as long as you know value_size when you do the malloc. But it won't be pretty.
struct token {
int type;
void *value;
};
value_size = sizeof(type)*item_count;
struct token *p = malloc(sizeof(struct token) + value_size);
//can't do memcpy: memcpy(p->value, val, value_size);
//do this instead
type* p = (type*)&(p->value);
type* end = p+item_count;
while (p<end) { *p++ = someItem; }
Note that you need an extra address-of operator when you want to get the extra storage.
type *ptr = (type*)&(token->value);
This will 'waste' sizeof(void*) bytes, and the original type of value
doesn't really matter, so you may as well use a smaller item. I'd probably typedef char placeholder;
and make value
that type.
Upvotes: 1
Reputation: 75389
Well, sort of, but it's probably not something you want:
struct token {
// your fields
size_t item_size;
size_t length
};
struct token *make_token(/* your arguments */, size_t item_size, size_t length)
{
struct token *t = malloc(sizeof *t + item_size * length);
if(t == NULL) return NULL;
t->item_size = item_size;
t->length = length;
// rest of initialization
}
The following macro can be used to index your data (assuming x
is a struct token *
):
#define idx(x, i, t) *(t *)(i < x->length ? sizeof(t) == x->item_size ?
(void *)(((char *)x[1]) + x->item_size * i)
: NULL : NULL)
And, if you like, the following macro can wrap your make_token
function to make it a little more intuitive (or more hackish, if you think about it that way):
#define make_token(/* args */, t, l) (make_token)(/* args */, sizeof(t), l)
Usage:
struct token *p = make_token(/* args */, int, 5); // allocates space for 5 ints
...
idx(p, 2, int) = 10;
Upvotes: 5
Reputation: 71516
I would probably do this:
struct token {
int type;
void *value;
};
struct token p;
p.value = malloc(value_size);
p.value[0] = something;
p.value[1] = something;
...
edit, actually you have to typecast those p.value[index] = somethings. And/or use a union to not have to typecast.
Upvotes: 1