Reputation: 85
So I'm trying to call a function every n seconds. The below is a simple representation of what I'm trying to achieve. I wanted to know if the below method is the only way to achieve this. I would love if the "if" condition can be avoided.
#include <stdio.h>
#include <time.h>
void print_hello(int i) {
printf("hello\n");
printf("%d\n", i);
}
int main () {
time_t start_t, end_t;
double diff_t;
time(&start_t);
int i = 0;
while(1) {
time(&end_t);
// printf("here in main");
i = i + 1;
diff_t = difftime(end_t, start_t);
if(diff_t==5) {
// printf("Execution time = %f\n", diff_t);
print_hello(i);
time(&start_t);
}
}
return(0);
}
Upvotes: 1
Views: 287
Reputation: 20171
The usage of time in OPs program can be reduced to something like
// get tStart;
// set tEnd = tStart + x;
do {
// get t;
} while (t < tEnd);
This is what is called busy-wait.
It might be used to write code with most precise timing as well as in other special cases. The draw-back is that the waiting consumes ful CPU load. (You might be even able to hear this – by raising ventilation noise.)
In general, however, spinning is considered an anti-pattern and should be avoided, as processor time that could be used to execute a different task is instead wasted on useless activity.
Another option is to delegate the wake-up to the system, which reduces the load of process/thread to minimum while waiting:
#include <chrono>
#include <iostream>
#include <thread>
void print_hello(int i)
{
std::cout << "hello\n"
<< i << '\n';
}
int main ()
{
using namespace std::chrono_literals; // to support e.g. 5s for 5 sceconds
auto tStart = std::chrono::system_clock::now();
for (int i = 1; i <= 3; ++i) {
auto tEnd = tStart + 2s;
std::this_thread::sleep_until(tEnd);
print_hello(i);
tStart = tEnd;
}
}
Output:
hello
1
hello
2
hello
3
(I had to reduce number of iterations and the waiting times to prevent the TLE in online compiler.)
std::this_thread::sleep_until
Blocks the execution of the current thread until specified sleep_time has been reached.
The clock tied to sleep_time is used, which means that adjustments of the clock are taken into account. Thus, the duration of the block might, but might not, be less or more than sleep_time - Clock::now() at the time of the call, depending on the direction of the adjustment. The function also may block for longer than until after sleep_time has been reached due to scheduling or resource contention delays.
The last sentence mentions the draw-back of this solution: The OS may decide to wake-up the thread/process later than requested. That may happen e.g. is OS is under high load. In the “normal” case, the latency shouldn't be more than a few milli-seconds. So, the latency might be tolerable.
Please, note how tEnd
and tStart
are updated in loop. The current wake-up time is not considered to prevent accumulation of latencies.
Upvotes: 4