Reputation: 4554
My dataframe is given below
df =
index element data1 data2 data3
0 M1 10 20 30
1 M1 40 50 60
2 M2 70 80 90
3 M2 100 120 130
4 M3 140 150 160
5 M3 170 180 190
6 M4 200 210 230
element_list1 = ['M1','M4',...........,'M25']
element_list2 = ['M2','M5',...........,'M26']
element_list3 = ['M3','M6',...........,'M27']
Now I want to create a new column. Value in the new column is based on the name of the element. If element belongs to list1 then select data2, list2 then data2, etc. Finally I want to achieve something like below
df =
index element data1 data2 data3 final
0 M1 10 20 30 10
1 M1 40 50 60 40
2 M2 70 80 90 80
3 M2 100 120 130 120
4 M3 140 150 160 160
5 M3 170 180 190 190
6 M4 200 210 230 200
My present code is given below:
df['final'] = np.nan
for a in element_list1:
for i,j in enumerate(df['element']):
if j==a:
df['final'].iloc[i] = df['data1'].iloc[i]
for a in element_list2:
for i,j in enumerate(df['element']):
if j==a:
df['final'].iloc[i] = df['data2'].iloc[i]
for a in element_list3:
for i,j in enumerate(df['element']):
if j==a:
df['final'].iloc[i] = df['data3'].iloc[i]
Is there a simple approach than above?
Upvotes: 0
Views: 80
Reputation: 7353
# Make element lists
e1 = np.arange(1,26,3)
e2 = e1 + 1
e3 = e1 + 2
element_list1 = [f'M{x}' for x in e1.tolist()]
element_list2 = [f'M{x}' for x in e2.tolist()]
element_list3 = [f'M{x}' for x in e3.tolist()]
element_lists = [element_list1, element_list2, element_list3]
# drop column 'index' from the dataframe
df = df.drop(columns='index')
# process data for 'final' column
final = pd.concat([df.data1[df.element.isin(element_lists[0])],
df.data2[df.element.isin(element_lists[1])],
df.data3[df.element.isin(element_lists[2])],])
df['final'] = final
df
import sys
if sys.version_info[0] < 3:
from StringIO import StringIO
else:
from io import StringIO
import pandas as pd
df_string = """
index element data1 data2 data3
0 M1 10 20 30
1 M1 40 50 60
2 M2 70 80 90
3 M2 100 120 130
4 M3 140 150 160
5 M3 170 180 190
6 M4 200 210 230
"""
df = pd.read_csv(StringIO(df_string), sep="\s+")
Upvotes: 1