Reputation: 1677
I'm designing a system that uses a microservices architecture with event-based communication (using Google Cloud Pub/Sub).
Each of the services is listening and publishing messages so between the services everything is excellent.
On top of that, I want to provide a REST API that users can use without breaking the event-based approach. However, if I have an endpoint that triggers event X, how will I send the response to the user? Does it make sense to create a subscriber for a "ProcessXComplete" event and than return 200 OK?
For example:
I have the following microservices:
I'm want to send this request "POST /posts" - this request sent to the frontend service. The frontend service should trigger "NewPostEvent." Both Service A and Service B will listen to this event and do something.
So far, so good, but here is where things are starting to get messy for me. Now I want to return the user that made the request a valid response that the operation completed. How can I know that all services finished their tasks, and how to create the handler to return this response?
Does it even make sense to go this way or is there a better design to implement both event-based communications between services and providing a REST API
Upvotes: 1
Views: 1159
Reputation: 4002
It really depends on your business case. If the REST svc is dropping message in message queue , then after dropping the message we simply return the reference ID that client can poll to check the progress.
E.g. flight search where your system has to calls 100s of backend services to show you flight deals . Search api will drop the message in the queue and save the same in the database with some reference ID and you return same id to client. Once worker are done with the message they will update the reference in DB with results and meanwhile your client will be polling (or web sockets preferably) to update the UI with results.
The idea is you can't block the request and keep everything async , this will make system scaleable.
Upvotes: 0
Reputation: 1224
What you're describing is absolutely one of the challenges of event-based programming and how eventual-consistency (and lack of atomicity) coordinates with essentially synchronous UI/UX.
It generally does make sense to have an EventXComplete
event. Our microservices publish events on completion of anything that could potentially fail. So, there are lots of ServiceA.EventXSuccess
events flowing through the queues. I'm not familiar with Google Cloud PubSub specifically, but in general in Messaging systems there is little extra cost to publishing messages with few (or no) subscribers to require compute power. So, we tend to over-articulate service status by default; it's easy to come back later and tone down messaging as needed. In fact, some of our newer services have Messaging Verbosity configurable via an Admin API.
The Frontend Service (which here is probably considered a Gateway Service
or Facade Layer
) has taken on the responsibility of being a responsive backing for your UI, so it needs to, in fact, BE responsive. In this example, I'd expect it to persist the User's POST request, return a 200
response and then update its local copy of the request based on events it's subscribed to from ServiceA and ServiceB. It also needs to provide a mechanism (events, email, webhook, gRPC, etc.) to communicate from the Frontend Service back to any UI if failure happens (maybe even if success happens). Which communication you use depends on how important and time-sensitive the notification is. A good example of this is getting an email from Amazon saying billing has failed on an Order you placed. They let you know via email within a few minutes, but they don't make you wait for the ExecuteOrderBilling
message to get processed in the UI.
Connecting Microservices to the UI has been one of the most challenging aspects of our particular journey; avoiding tight coupling of models/data structures, UI workflows that are independent of microservice process flows, and perhaps the toughest one for us: authorization. These are the hidden dark-sides of this distributed architecture pattern, but they too can be overcome. Some experimentation with your particular system is likely required.
Upvotes: 1