Reputation: 616
Suppose I have a dataframe as follows:
df <- data.frame(
alpha = 0:20,
beta = 30:50,
gamma = 100:120
)
I have a custom function that makes new columns. (Note, my actual function is a lot more complex and can't be vectorized without a custom function, so please ignore the substance of the transformation here.) For example:
newfun <- function(var = NULL) {
newname <- paste0(var, "NEW")
df[[newname]] <- df[[var]]/100
return(df)
}
I want to apply this over many columns of the dataset repeatedly and have the dataset "build up." This happens just fine when I do the following:
df <- newfun("alpha")
df <- newfun("beta")
df <- newfun("gamma")
Obviously this is redundant and a case for map
. But when I do the following I get back a list of dataframes, which is not what I want:
df <- data.frame(
alpha = 0:20,
beta = 30:50,
gamma = 100:120
)
out <- c("alpha", "beta", "gamma") %>%
map(function(x) newfun(x))
How can I iterate over a vector of column names AND see the changes repeatedly applied to the same dataframe?
Upvotes: 2
Views: 414
Reputation: 39174
Based on the way you wrote your function, a for loop that assign the result of newfun
to df
repeatedly works pretty well.
vars <- names(df)
for (i in vars){
df <- newfun(i)
}
df
# alpha beta gamma alphaNEW betaNEW gammaNEW
# 1 0 30 100 0.00 0.30 1.00
# 2 1 31 101 0.01 0.31 1.01
# 3 2 32 102 0.02 0.32 1.02
# 4 3 33 103 0.03 0.33 1.03
# 5 4 34 104 0.04 0.34 1.04
# 6 5 35 105 0.05 0.35 1.05
# 7 6 36 106 0.06 0.36 1.06
# 8 7 37 107 0.07 0.37 1.07
# 9 8 38 108 0.08 0.38 1.08
# 10 9 39 109 0.09 0.39 1.09
# 11 10 40 110 0.10 0.40 1.10
# 12 11 41 111 0.11 0.41 1.11
# 13 12 42 112 0.12 0.42 1.12
# 14 13 43 113 0.13 0.43 1.13
# 15 14 44 114 0.14 0.44 1.14
# 16 15 45 115 0.15 0.45 1.15
# 17 16 46 116 0.16 0.46 1.16
# 18 17 47 117 0.17 0.47 1.17
# 19 18 48 118 0.18 0.48 1.18
# 20 19 49 119 0.19 0.49 1.19
# 21 20 50 120 0.20 0.50 1.20
Upvotes: 0
Reputation: 11255
An alternative approach is to change your function to only return a vector:
newfun2 <- function(var = NULL) {
df[[var]] / 100
}
newfun2('alpha')
# [1] 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
#[15] 0.14 0.15 0.16 0.17 0.18 0.19 0.20
Then, using base, you can use lapply()
to loop through your list of functions to do:
cols <- c("alpha", "beta", "gamma")
df[, paste0(cols, 'NEW')] <- lapply(cols, newfun2)
#or
#df[, paste0(cols, 'NEW')] <- purrr::map(cols, newfun2)
df
alpha beta gamma alphaNEW betaNEW gammaNEW
1 0 30 100 0.00 0.30 1.00
2 1 31 101 0.01 0.31 1.01
3 2 32 102 0.02 0.32 1.02
4 3 33 103 0.03 0.33 1.03
5 4 34 104 0.04 0.34 1.04
6 5 35 105 0.05 0.35 1.05
7 6 36 106 0.06 0.36 1.06
8 7 37 107 0.07 0.37 1.07
9 8 38 108 0.08 0.38 1.08
10 9 39 109 0.09 0.39 1.09
11 10 40 110 0.10 0.40 1.10
12 11 41 111 0.11 0.41 1.11
13 12 42 112 0.12 0.42 1.12
14 13 43 113 0.13 0.43 1.13
15 14 44 114 0.14 0.44 1.14
16 15 45 115 0.15 0.45 1.15
17 16 46 116 0.16 0.46 1.16
18 17 47 117 0.17 0.47 1.17
19 18 48 118 0.18 0.48 1.18
20 19 49 119 0.19 0.49 1.19
21 20 50 120 0.20 0.50 1.20
Upvotes: 1
Reputation: 161085
Writing the function to reach outside of its scope to find some df
is both risky and will bite you, especially when you see something like:
df[['a']] <- 2
# Error in df[["a"]] <- 2 : object of type 'closure' is not subsettable
You will get this error when it doesn't find your variable named df
, and instead finds the base function named df
. Two morals from this discovery:
df
myself, it's generally bad practice to name variables the same as R functions (especially from base); andTo remedy this, and since your function relies on knowing what the old/new variable names are or should be, I think pmap
or base R Map
may work better. Further, I suggest that you name the new variables outside of the function, making it "data-only".
myfunc <- function(x) x/100
setNames(lapply(dat[,cols], myfunc), paste0("new", cols))
# $newalpha
# [1] 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17
# [19] 0.18 0.19 0.20
# $newbeta
# [1] 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47
# [19] 0.48 0.49 0.50
# $newgamma
# [1] 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17
# [19] 1.18 1.19 1.20
From here, we just need to column-bind (cbind
) it:
cbind(dat, setNames(lapply(dat[,cols], myfunc), paste0("new", cols)))
# alpha beta gamma newalpha newbeta newgamma
# 1 0 30 100 0.00 0.30 1.00
# 2 1 31 101 0.01 0.31 1.01
# 3 2 32 102 0.02 0.32 1.02
# 4 3 33 103 0.03 0.33 1.03
# 5 4 34 104 0.04 0.34 1.04
# ...
Special note: if you plan on doing this iteratively (repeatedly), it is generally bad to iteratively add rows to frames; while I know this is a bad idea for adding rows, I suspect (without proof at the moment) that doing the same with columns is also bad. For that reason, if you do this a lot, consider using do.call(cbind, c(list(dat), ...))
where ...
is the list of things to add. This results in a single call to cbind
and therefore only a single memory-copy of the original dat
. (Contrast that with iteratively calling the *bind
functions which make a complete copy with each pass, scaling poorly.)
additions <- lapply(1:3, function(i) setNames(lapply(dat[,cols], myfunc), paste0("new", i, cols)))
str(additions)
# List of 3
# $ :List of 3
# ..$ new1alpha: num [1:21] 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
# ..$ new1beta : num [1:21] 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 ...
# ..$ new1gamma: num [1:21] 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 ...
# $ :List of 3
# ..$ new2alpha: num [1:21] 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
# ..$ new2beta : num [1:21] 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 ...
# ..$ new2gamma: num [1:21] 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 ...
# $ :List of 3
# ..$ new3alpha: num [1:21] 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
# ..$ new3beta : num [1:21] 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 ...
# ..$ new3gamma: num [1:21] 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 ...
do.call(cbind, c(list(dat), additions))
# alpha beta gamma new1alpha new1beta new1gamma new2alpha new2beta new2gamma new3alpha new3beta new3gamma
# 1 0 30 100 0.00 0.30 1.00 0.00 0.30 1.00 0.00 0.30 1.00
# 2 1 31 101 0.01 0.31 1.01 0.01 0.31 1.01 0.01 0.31 1.01
# 3 2 32 102 0.02 0.32 1.02 0.02 0.32 1.02 0.02 0.32 1.02
# 4 3 33 103 0.03 0.33 1.03 0.03 0.33 1.03 0.03 0.33 1.03
# 5 4 34 104 0.04 0.34 1.04 0.04 0.34 1.04 0.04 0.34 1.04
# 6 5 35 105 0.05 0.35 1.05 0.05 0.35 1.05 0.05 0.35 1.05
# ...
Upvotes: 2