Reputation: 277
I have a pandas dataframe that looks something like this:
name job jobchange_rank date
Thisguy Developer 1 2012
Thisguy Analyst 2 2014
Thisguy Data Scientist 3 2015
Anotherguy Developer 1 2018
The jobchange_rank represents the each individual's (based on name) ranked change in position, where rank nr 1 represent his/her first position nr 2 his/her second position, etc.
Now for the fun part. I want to create a new column where I can see a person's previous job, something like this:
name job jobchange_rank date previous_job
Thisguy Developer 1 2012 None
Thisguy Analyst 2 2014 Developer
Thisguy Data Scientist 3 2015 Analyst
Anotherguy Developer 1 2018 None
I've created the following code to get the "None" values where there was no job change:
df.loc[df['jobchange_rank'].sub(df['jobchange_rank'].min()) == 0, 'previous_job'] = 'None'
Sadly, I can't seem to figure out how to get the values from the other column where the needed condition applies.
Any help is more then welcome! Thanks in advance.
Upvotes: 3
Views: 567
Reputation: 51155
This answer assumes that your DataFrame is sorted by name
and jobchange_rank
, if that is not the case, sort first.
# df = df.sort_values(['name', 'jobchange_rank'])
m = df['name'].eq(df['name'].shift())
df['job'].shift().where(m)
0 NaN
1 Developer
2 Analyst
3 NaN
Name: job, dtype: object
Or using a groupby
+ shift
(assuming at least sorted by jobchange_rank
)
df.groupby('name')['job'].shift()
0 NaN
1 Developer
2 Analyst
3 NaN
Name: job, dtype: object
Although the groupby
+ shift
is more concise, on larger inputs, if your data is already sorted like your example, it may be faster to avoid the groupby
and use the first solution.
Upvotes: 3