Reputation: 13
I have a 3 dimensional matrix of shape (height, width, 4). In fact it is a bitmap with RGBA values per pixel. I would like to reduce each RGBA set to a set with two values, say [x,y].
see image at imgur com / Blr2EQC
I have tried using map_fn
import cv2
import tensorflow as tf
def map_pixel_to_vector(elt):
b = elt[0] - 127
g = elt[1] - 127
r = elt[2] - 127
a = elt[3] - 127
dx = (g * 127) + r
dy = (a * 127) + b
return [dx,dy]
file = "example.png"
frame = cv2.imread(file, cv2.IMREAD_UNCHANGED
s = tf.shape(frame)
# reshape to list of pixels
elts = tf.reshape(frame, (s[0]*s[1],4))
# cast from uint8 to int32 to support negative output
elts = tf.dtypes.cast(elts, tf.int32)
# map each pixel to output
elts = tf.map_fn(map_pixel_to_vector, elts)
# reshape back to image resolution
elts = tf.reshape(elts, (s[0], s[1], 2)
Now I would expect this to work, each [rgba] pixel would be reduced to [xy] pixel, but instead I get
ValueError: The two structures don't have the same nested structure.
First structure: type=DType str=<dtype: 'int32'>
Second structure: type=list str=[<tf.Tensor: id=262537, shape=(), dtype=int32, numpy=98>, <tf.Tensor: id=262540, shape=(), dtype=int32, numpy=210>]
More specifically: Substructure "type=list str=[<tf.Tensor: id=262537, shape=(), dtype=int32, numpy=98>, <tf.Tensor: id=262540, shape=(), dtype=int32, numpy=210>]" is a sequence, while substructure "type=DType str=<dtype: 'int32'>" is not
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "main.py", line 97, in <module>
loss = loss_fn(exc, [outputs[-1]], [inputs[-1]])
File "main.py", line 36, in loss_fn
elts = tf.map_fn(reduce_pixel_to_vector, elts)
File "/usr/lib/python3.7/site-packages/tensorflow_core/python/ops/map_fn.py", line 268, in map_fn
maximum_iterations=n)
File "/usr/lib/python3.7/site-packages/tensorflow_core/python/ops/control_flow_ops.py", line 2714, in while_loop
loop_vars = body(*loop_vars)
File "/usr/lib/python3.7/site-packages/tensorflow_core/python/ops/control_flow_ops.py", line 2705, in <lambda>
body = lambda i, lv: (i + 1, orig_body(*lv))
File "/usr/lib/python3.7/site-packages/tensorflow_core/python/ops/map_fn.py", line 258, in compute
nest.assert_same_structure(dtype or elems, packed_fn_values)
File "/usr/lib/python3.7/site-packages/tensorflow_core/python/util/nest.py", line 313, in assert_same_structure
% (str(e), str1, str2))
Any help would be greatly appreciated.
Upvotes: 1
Views: 256
Reputation: 59691
Your function map_pixel_to_vector
is returning a list, not a tensor. You can make it into a tensor for example with tf.stack
or tf.convert_to_tensor
:
def map_pixel_to_vector(elt):
b = elt[0] - 127
g = elt[1] - 127
r = elt[2] - 127
a = elt[3] - 127
dx = (g * 127) + r
dy = (a * 127) + b
return tf.stack([dx, dy])
However, you can do the same operation without tf.map_fn
more simply and efficiently like this:
import tensorflow as tf
import cv2
file = "example.png"
frame = tf.constant(cv2.imread(file, cv2.IMREAD_UNCHANGED))
elts = tf.dtypes.cast(frame, tf.int32)
r, g, b, a = tf.unstack(elts - 127, num=4, axis=-1)
elts = tf.stack([(g * 127) + r, (a * 127) + b], axis=-1)
Upvotes: 1