Reputation: 191
I have a GeoDataFrame and I want to get a numpy array that corresponds to the GeoDataFrame.plot().
At the moment, my code looks like this:
import numpy as np
import geopandas as gpd
from shapely.geometry import Polygon
import matplotlib.pyplot as plt
from PIL import Image
# Create GeoDataFrame
poly_list = [Polygon([[0, 0], [1, 0], [1, 1], [0, 1]])]
polys_gdf = gpd.GeoDataFrame(geometry=poly_list)
# Save plot with matplotlib
plt.ioff()
polys_gdf.plot()
plt.savefig('plot.png')
plt.close()
# Open file and convert to array
img = Image.open('plot.png')
arr = np.array(img.getdata())
This is a minimal working example. My actual problem is that I have a list of thousands of GeoDataFrames, 'list_of_gdf'.
My first idea was to just run that in a loop:
arr_list = []
for element in list_of_gdf:
plt.ioff()
element.plot()
plt.savefig('plot.png')
plt.close()
img = Image.open('plot.png')
arr_list.append(np.array(img.getdata()))
This seems like it could be done in a faster way, instead of saving and opening every single .png-file for example. Any ideas?
Upvotes: 3
Views: 2509
Reputation: 191
I found a working solution for me. Instead of saving and opening every picture as .png, I use matplotlib "backend agg to acces the figure canvas as an RGB string and then convert it ot an array" (https://matplotlib.org/3.1.0/gallery/misc/agg_buffer.html).
arr_list = []
for element in list_of_gdf:
plt.close('all')
fig, ax = plt.subplots()
ax.axis('off')
element.plot(ax = ax)
fig.canvas.draw()
arr = np.array(fig.canvas.renderer.buffer_rgba())
arr_list.append(arr)
Upvotes: 2