Reputation: 35
I have a dataframe 'A' with 3 columns and 4 rows (X1..X4). Some of the elements in 'A' are non-zero. I have another dataframe 'B' with 1 column and 4 rows (X1..X4). I would like to create a dataframe 'C' so that where 'A' has a nonzero value, it takes the value from the equivalent row in 'B'
I've tried a.where(a!=0,c)..obviously wrong as c is not a scalar
A = pd.DataFrame({'A':[1,6,0,0],'B':[0,0,1,0],'C':[1,0,3,0]},index=['X1','X2','X3','X4'])
B = pd.DataFrame({'A':{'X1':1.5,'X2':0.4,'X3':-1.1,'X4':5.2}})
These are the expected results:
C = pd.DataFrame({'A':[1.5,0.4,0,0],'B':[0,0,-1.1,0],'C':[1.5,0,-1.1,0]},index=['X1','X2','X3','X4'])
Upvotes: 1
Views: 288
Reputation: 30920
Use:
A.mask(A!=0,B['A'],axis=0,inplace=True)
print(A)
A B C
X1 1.5 0.0 1.5
X2 0.4 0.0 0.0
X3 0.0 -1.1 -1.1
X4 0.0 0.0 0.0
Upvotes: 1
Reputation: 75080
np.where()
:
If you want to assign back to A:
A[:]=np.where(A.ne(0),B,A)
For a new df:
final=pd.DataFrame(np.where(A.ne(0),B,A),columns=A.columns)
A B C
0 1.5 0.0 1.5
1 0.4 0.0 0.0
2 0.0 -1.1 -1.1
3 0.0 0.0 0.0
Upvotes: 2
Reputation: 323236
Usage of fillna
A=A.mask(A.ne(0)).T.fillna(B.A).T
A
Out[105]:
A B C
X1 1.5 0.0 1.5
X2 0.4 0.0 0.0
X3 0.0 -1.1 -1.1
X4 0.0 0.0 0.0
Or
A=A.mask(A!=0,B.A,axis=0)
Out[111]:
A B C
X1 1.5 0.0 1.5
X2 0.4 0.0 0.0
X3 0.0 -1.1 -1.1
X4 0.0 0.0 0.0
Upvotes: 2