Reputation: 249
I am trying to connect Azure SQL Database from Azure Machine Learning service, but I got the below error.
Please check Error: -
**('IM002', '[IM002] [unixODBC][Driver Manager]Data source name not found and no default driver specified (0) (SQLDriverConnect)')**
Please Check the below code that I have used for database connection: -
import pyodbc
class DbConnect:
# This class is used for azure database connection using pyodbc
def __init__(self):
try:
self.sql_db = pyodbc.connect(SERVER=<servername>;PORT=1433;DATABASE=<databasename>;UID=<username>;PWD=<password>')
get_name_query = "select name from contacts"
names = self.sql_db.execute(get_name_query)
for name in names:
print(name)
except Exception as e:
print("Error in azure sql server database connection : ", e)
sys.exit()
if __name__ == "__main__":
class_obj = DbConnect()
Is there any way to solve the above error? Please let me know if there is any way.
Upvotes: 1
Views: 1177
Reputation: 79
Alternatively you can create SQL datastore and create a dataset from the SQL datastore. Learn how: https://learn.microsoft.com/en-us/azure/machine-learning/service/how-to-create-register-datasets#create-tabulardatasets
Sample code:
from azureml.core import Dataset, Datastore
# create tabular dataset from a SQL database in datastore
sql_datastore = Datastore.get(workspace, 'mssql')
sql_ds = Dataset.Tabular.from_sql_query((sql_datastore, 'SELECT * FROM my_table'))
@AkshayGodase Any particular reason that you want to use pyodbc?
Upvotes: 1
Reputation: 5924
I'd consider using azureml.dataprep
over pyodbc for this task (the API may change, but this worked last time I tried):
import azureml.dataprep as dprep
ds = dprep.MSSQLDataSource(server_name=<server-name,port>,
database_name=<database-name>,
user_name=<username>,
password=<password>)
You should then be able to collect the result of an SQL query in pandas e.g. via
dataflow = dprep.read_sql(ds, "SELECT top 100 * FROM [dbo].[MYTABLE]")
dataflow.to_pandas_dataframe()
Upvotes: 1