Tobias P. G.
Tobias P. G.

Reputation: 820

How to make a dataframe from a dictionary with unique keys and values as lists?

I'm currently scraping some user//follower information from the Twitter API using Tweepy. I'm currently storing the data as a a dictionary where every key is a unique twitter user and the values are a list of ID's for their followers.

The data looks like this:

{'realDonaldTrump': [
    123456,
    123457,
    123458,
    ...
    ],
 'BarackObama' : [
    999990,
    999991,
    999992,
    ...
    ]}

What I need is a dataframe that looks like this:

user             follower
realDonaldTrump  123456
realDonaldTrump  123457
realDonaldTrump  123458
...              ...
BarackObama      999990
BarackObama      999991
BarackObama      999992
...              ...

I've already tried:

df = pd.DataFrame.from_dict(followers)

but it gives me a new column for each key, and doesn't handle uneven length of follower lists.

Is there a smart way to convert the dictionary structure I have into a dataframe? Or should I store the initial data differently?

Upvotes: 1

Views: 306

Answers (3)

Carp-Bezverhnii Maxim
Carp-Bezverhnii Maxim

Reputation: 71

import pandas as pd

followers = {
    'realDonaldTrump': [123456, 123457, 123458],
    'BarackObama': [999990, 999991, 999992]
}

df = pd.DataFrame()

i = 0
for user in followers:
    for r in followers[user]:
        df.loc[i, 'user'] = user
        df.loc[i, 'record'] = r
        i = i + 1

print(df)

Result:

             user    record
0  realDonaldTrump  123456
1  realDonaldTrump  123457
2  realDonaldTrump  123458
3      BarackObama  999990
4      BarackObama  999991
5      BarackObama  999992

Upvotes: 1

Kshitij Saxena
Kshitij Saxena

Reputation: 940

Create a compatible dict:

final_dict = {'users':[], 'followers':[]}
for key in followers:
  for i in range(len(followers[key])):
    final_dict['users'].append(key)
    final_dict['followers'].append(followers[key][i])

df = pd.DataFrame.from_dict(final_dict)

Output:

    users           followers
0   realDonaldTrump 123456
1   realDonaldTrump 123457
2   realDonaldTrump 123458
3   BarackObama     999990
4   BarackObama     999991
5   BarackObama     999992

Upvotes: 1

jezrael
jezrael

Reputation: 862441

Use list comprehension for tuples and pass to DataFrame constructor:

followers = {'realDonaldTrump': [
    123456,
    123457
    ],
 'BarackObama' : [
    999990,
    999991,
    999992
    ]}

df = pd.DataFrame([(k, x) for k, v in followers.items() for x in v], 
                   columns=['user','follower'])
print (df)
              user  follower
0  realDonaldTrump    123456
1  realDonaldTrump    123457
2      BarackObama    999990
3      BarackObama    999991
4      BarackObama    999992

Upvotes: 1

Related Questions