Reputation: 26859
The following (MCVE if compiled as a cdylib
called libffitest
, requires libc
as a dependency) demonstrates the problem:
use libc::{c_char, c_void, size_t};
use std::ffi::CString;
use std::mem;
use std::slice;
#[repr(C)]
#[derive(Clone)]
pub struct Array {
pub data: *const c_void,
pub len: size_t,
}
#[no_mangle]
pub unsafe extern "C" fn bar() -> Array {
let v = vec![
CString::new("Hi There").unwrap().into_raw(),
CString::new("Hi There").unwrap().into_raw(),
];
v.into()
}
#[no_mangle]
pub extern "C" fn drop_word_array(arr: Array) {
if arr.data.is_null() {
return;
}
// Convert incoming data to Vec so we own it
let mut f: Vec<c_char> = arr.into();
// Deallocate the underlying c_char data by reconstituting it as a CString
let _: Vec<CString> = unsafe { f.iter_mut().map(|slice| CString::from_raw(slice)).collect() };
}
// Transmute to array for FFI
impl From<Vec<*mut c_char>> for Array {
fn from(sl: Vec<*mut c_char>) -> Self {
let array = Array {
data: sl.as_ptr() as *const c_void,
len: sl.len() as size_t,
};
mem::forget(sl);
array
}
}
// Reconstitute from FFI
impl From<Array> for Vec<c_char> {
fn from(arr: Array) -> Self {
unsafe { slice::from_raw_parts_mut(arr.data as *mut c_char, arr.len).to_vec() }
}
}
I thought that by reconstituting the incoming Array
as a slice, taking ownership of it as a Vec
, then reconstituting the elements as CString
, I was freeing any allocated memory, but I'm clearly doing something wrong. Executing this Python script tells me that it's trying to free a pointer that was not allocated:
python(85068,0x10ea015c0) malloc: *** error for object 0x7ffdaa512ca1: pointer being freed was not allocated
import sys
import ctypes
from ctypes import c_void_p, Structure, c_size_t, cast, POINTER, c_char_p
class _FFIArray(Structure):
"""
Convert sequence of structs to C-compatible void array
"""
_fields_ = [("data", c_void_p),
("len", c_size_t)]
def _arr_to_wordlist(res, _func, _args):
ls = cast(res.data, POINTER(c_char_p * res.len))[0][:]
print(ls)
_drop_wordarray(res)
prefix = {"win32": ""}.get(sys.platform, "lib")
extension = {"darwin": ".dylib", "win32": ".dll"}.get(sys.platform, ".so")
lib = ctypes.cdll.LoadLibrary(prefix + "ffitest" + extension)
lib.bar.argtypes = ()
lib.bar.restype = _FFIArray
lib.bar.errcheck = _arr_to_wordlist
_drop_wordarray = lib.drop_word_array
if __name__ == "__main__":
lib.bar()
Upvotes: 0
Views: 248
Reputation: 19662
Well, that was a fun one to go through.
Your biggest problem is the following conversion:
impl From<Array> for Vec<c_char> {
fn from(arr: Array) -> Self {
unsafe { slice::from_raw_parts_mut(arr.data as *mut c_char, arr.len).to_vec() }
}
}
You start with what comes out of the FFI boundary as an array of strings (i.e. *mut *mut c_char
). For some reason, you decide that all of a sudden, it is a Vec<c_char>
and not a Vec<*const c_char>
as you would expect for the CString
conversion. That's UB #1 - and the cause of your use-after-free.
The unnecessarily convoluted conversions made things even muddier due to the constant juggling between types. If your FFI boundary is Vec<CString>
, why do you split the return into two separate calls? That's literally calling for disaster, as it happened.
Consider the following:
impl From<Array> for Vec<CString> {
fn from(arr: Array) -> Self {
unsafe {
slice::from_raw_parts(
arr.data as *mut *mut c_char,
arr.len
)
.into_iter().map(|r| CString::from_raw(*r))
.collect()
}
}
}
This gives you a one-step FFI boundary conversion (without the necessity for the second unsafe
block in your method), clean types and no leaks.
Upvotes: 2