Reputation: 759
I am solving multi-class segmentation problem using u-net architecture in pytorch. As specified in U-NET paper, I am trying to implement custom weight maps to counter class imbalances.
Below is the opertion which I want to apply -
Also, I reduced the batch_size=1
so that I can remove that dimension while passing it to precompute_to_masks
function.
I tried the below approach-
def precompute_for_image(masks):
masks = masks.cpu()
cls = masks.unique()
res = torch.stack([torch.where(masks==cls_val, torch.tensor(1), torch.tensor(0)) for cls_val in cls])
return res
def train(n_epochs, loaders, model, optimizer, criterion, use_cuda, save_path):
###################
# train the model #
###################
model.train()
for batch_idx, (data, target) in enumerate(final_train_loader):
# move to GPU
if use_cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
temp_target = precompute_for_image(target)
w = weight_map(temp_target)
loss = criterion(output,target)
loss = w*loss
loss.backward()
optimizer.step()
train_loss = train_loss + ((1 / (batch_idx + 1)) * (loss.data - train_loss))
return model
where weight_map is the function to calculate weight mask which I got from here
The issue, I am facing is I am getting memory error
when I apply the following method.
I am using 61gb RAM and Tesla V100 GPU.
I really think I am applying it in incorrect way.
How to do it?
I am omitting the non-essential details from the training loop.
Below is my weight_map
function:
from skimage.segmentation import find_boundaries
w0 = 10
sigma = 5
def make_weight_map(masks):
"""
Generate the weight maps as specified in the UNet paper
for a set of binary masks.
Parameters
----------
masks: array-like
A 3D array of shape (n_masks, image_height, image_width),
where each slice of the matrix along the 0th axis represents one binary mask.
Returns
-------
array-like
A 2D array of shape (image_height, image_width)
"""
nrows, ncols = masks.shape[1:]
masks = (masks > 0).astype(int)
distMap = np.zeros((nrows * ncols, masks.shape[0]))
X1, Y1 = np.meshgrid(np.arange(nrows), np.arange(ncols))
X1, Y1 = np.c_[X1.ravel(), Y1.ravel()].T
for i, mask in enumerate(masks):
# find the boundary of each mask,
# compute the distance of each pixel from this boundary
bounds = find_boundaries(mask, mode='inner')
X2, Y2 = np.nonzero(bounds)
xSum = (X2.reshape(-1, 1) - X1.reshape(1, -1)) ** 2
ySum = (Y2.reshape(-1, 1) - Y1.reshape(1, -1)) ** 2
distMap[:, i] = np.sqrt(xSum + ySum).min(axis=0)
ix = np.arange(distMap.shape[0])
if distMap.shape[1] == 1:
d1 = distMap.ravel()
border_loss_map = w0 * np.exp((-1 * (d1) ** 2) / (2 * (sigma ** 2)))
else:
if distMap.shape[1] == 2:
d1_ix, d2_ix = np.argpartition(distMap, 1, axis=1)[:, :2].T
else:
d1_ix, d2_ix = np.argpartition(distMap, 2, axis=1)[:, :2].T
d1 = distMap[ix, d1_ix]
d2 = distMap[ix, d2_ix]
border_loss_map = w0 * np.exp((-1 * (d1 + d2) ** 2) / (2 * (sigma ** 2)))
xBLoss = np.zeros((nrows, ncols))
xBLoss[X1, Y1] = border_loss_map
# class weight map
loss = np.zeros((nrows, ncols))
w_1 = 1 - masks.sum() / loss.size
w_0 = 1 - w_1
loss[masks.sum(0) == 1] = w_1
loss[masks.sum(0) == 0] = w_0
ZZ = xBLoss + loss
return ZZ
Traceback of the error-
MemoryError Traceback (most recent call last)
<ipython-input-30-f0a595b8de7e> in <module>
1 # train the model
2 model_scratch = train(20, final_train_loader, unet, optimizer,
----> 3 criterion, train_on_gpu, 'model_scratch.pt')
<ipython-input-29-b481b4f3120e> in train(n_epochs, loaders, model, optimizer, criterion, use_cuda, save_path)
24 loss = criterion(output,target)
25 target.requires_grad = False
---> 26 w = make_weight_map(target)
27 loss = W*loss
28 loss.backward()
<ipython-input-5-e75a6281476f> in make_weight_map(masks)
33 X2, Y2 = np.nonzero(bounds)
34 xSum = (X2.reshape(-1, 1) - X1.reshape(1, -1)) ** 2
---> 35 ySum = (Y2.reshape(-1, 1) - Y1.reshape(1, -1)) ** 2
36 distMap[:, i] = np.sqrt(xSum + ySum).min(axis=0)
37 ix = np.arange(distMap.shape[0])
MemoryError:
Upvotes: 1
Views: 2240
Reputation: 114936
Your final_train_loader
provides you with an input image data
and the expected pixel-wise labeling target
. I assume (following pytorch's conventions) that data
is of shape B-3-H-W and of dtype=torch.float
.
More importantly, target
is of shape B-H-W and of dtype=torch.long
.
On the other hand make_weight_map
expects its input to be C-H-W (with C
= number of classes, NOT batch size), of type numpy array.
Try providing make_weight_map
the input mask as it expects it and see if you get similar errors.
I also recommend that you visualize the resulting weight map - to make sure your function does what you expect it to do.
Upvotes: 2