Reputation: 11
Hi I need a help with some prolog functions, please:
Define predicates:
row(X,N,C): C is the row N of matrix X.
column(X,N,C): C is the column N of matrix X.
first_column(X,C,R): the matrix X is formed by first column C and the rest of matrix R.
symmetrical(X): X is a quadratic matrix symmetrical to the diagonal.
The matrix is a list of lists: [[a,b,c],[d,e,f],[g,h,i]] >>>
a b c
d e f
g h i
Upvotes: 0
Views: 12144
Reputation:
Consider:
row(M, N, Row) :-
nth1(N, M, Row).
column(M, N, Col) :-
transpose(M, MT),
row(MT, N, Col).
symmetrical(M) :-
transpose(M, M).
transpose([[]|_], []) :- !.
transpose([[I|Is]|Rs], [Col|MT]) :-
first_column([[I|Is]|Rs], Col, [Is|NRs]),
transpose([Is|NRs], MT).
first_column([], [], []).
first_column([[]|_], [], []).
first_column([[I|Is]|Rs], [I|Col], [Is|Rest]) :-
first_column(Rs, Col, Rest).
Testing with:
matrix([[a,b,c],[d,e,f],[g,h,i]]).
For rows:
?- matrix(M), row(M, N, Row).
M = [[a, b, c], [d, e, f], [g, h, i]],
N = 1,
Row = [a, b, c] ;
M = [[a, b, c], [d, e, f], [g, h, i]],
N = 2,
Row = [d, e, f] ;
M = [[a, b, c], [d, e, f], [g, h, i]],
N = 3,
Row = [g, h, i] ;
false.
Columns:
?- matrix(M), column(M, N, Col).
M = [[a, b, c], [d, e, f], [g, h, i]],
N = 1,
Col = [a, d, g] ;
M = [[a, b, c], [d, e, f], [g, h, i]],
N = 2,
Col = [b, e, h] ;
M = [[a, b, c], [d, e, f], [g, h, i]],
N = 3,
Col = [c, f, i] ;
false.
First column:
?- matrix(M), first_column(M, C, R).
M = [[a, b, c], [d, e, f], [g, h, i]],
C = [a, d, g],
R = [[b, c], [e, f], [h, i]].
Finally, matrix symmetry is defined by any matrix which is the transposition of itself.
?- matrix(M), symmetrical(M).
false.
?- symmetrical([[a,b,c],[b,d,e],[c,e,f]]).
true.
Upvotes: 5
Reputation: 10672
In SWI-Prolog you could define the row and column predicates like this:
row(N, Matrix, Row) :-
nth1(N, Matrix, Row).
col(N, Matrix, Col) :-
maplist(nth1(N), Matrix, Col).
Note that using these definitions you can also generate the rows/columns if only the Matrix
is given, e.g.
?- col(N, [[a, b], [c, d]], Col).
N = 1,
Col = [a, c] ;
N = 2,
Col = [b, d] ;
false.
Symmetric matrices could be generated like this:
% Generates matrix elements
element(RowN-ColN, Matrix, El) :-
row(RowN, Matrix, Row),
nth1(ColN, Row, El).
% Generates matrix symmetric elements, i.e. where Aij = Aji.
symmetric_element(Matrix, RowN-ColN) :-
element(RowN-ColN, Matrix, El),
element(ColN-RowN, Matrix, El).
% Generates row-colum indices for the upper triangle.
get_index_pair(N, RowN-ColN) :-
between(1, N, RowN),
succ(RowN, RowN1),
between(RowN1, N, ColN).
% Generates matrixes where every element is symmetric.
symmetric(Matrix) :-
length(Matrix, N),
findall(IndexPair, get_index_pair(N, IndexPair), IndexPairs),
maplist(symmetric_element(Matrix), IndexPairs).
Usage:
?- Matrix = [[a, b, c], Row2, Row3], symmetric(Matrix), numbervars(Matrix, 0, _).
Matrix = [[a, b, c], [b, A, B|C], [c, B|D]],
Row2 = [b, A, B|C],
Row3 = [c, B|D].
Upvotes: 3
Reputation: 158
row(N,Matrix,Row) :-
nth1(N,Matrix,Row).
col(N,Matrix,Col) :-
findall(E,(append(_,[Row|_],Matrix),nth1(N,Row,E)),Col).
Upvotes: 0