Reputation: 403
Sorry for the dumb question, but I got stuck. I have the dataframe with the next structure:
|.....| ID | Cause | Date |
| 1 | AR | SGNLss| 10-05-2019 05:01:00|
| 2 | TD | PTRXX | 12-05-2019 12:15:00|
| 3 | GZ | FAIL | 10-05-2019 05:01:00|
| 4 | AR | PTRXX | 12-05-2019 12:15:00|
| 5 | GZ | SGNLss| 10-05-2019 05:01:00|
| 6 | AR | FAIL | 10-05-2019 05:01:00|
What I want is convert DATE column value to columns rounded to day so that the expected DF will have ID, 10-05-2019, 11-05-2019, 12-05-2019... columns and the values - the number of events (Causes) happened on this Id.
It's not a problem to round day and count values separately, but I can't get how to do both these operations.
Upvotes: 0
Views: 39
Reputation: 150735
You can use pd.crosstab
:
pd.crosstab(df['ID'], df['Date'].dt.date)
Output:
Date 2019-10-05 2019-12-05
ID
AR 2 1
GZ 2 0
TD 0 1
Upvotes: 2