Reputation: 103
So, I have an issue. Pandas keeps telling me that
'datetime.date' is coerced to a datetime. In the future pandas will not coerce, and a TypeError will be raised. To >retain the current behavior, convert the 'datetime.date' to a datetime with >'pd.Timestamp'. I'd like to get rid of this warning So until now I had a dataframe with some data, I was doing some filtration and manipulation. At some point I have a column with dates in string format. I don't care about timzeones etc. It's all about day accuracy. I'm getting a warning mentioned above, when I convert the strings to datetime, like below:
df['Some_date'] = pd.to_datetime(df['Some_date'], format='%m/%d/%Y')
So I tried to do something like that:
df['Some_date'] = pd.Timestamp(df['Some_date'])
But it fails as pd.Timestamp
doesn't accept Series as an argument.
I'm looking for a quickest way to convert those strings to Timestamp.
=====================================
EDIT
I'm so sorry, for confusion. I'm getting my error at another place. It happens when I try to filtrate my data like this:
df = df[(df['Some_date'] > firstday)]
Where firstday
is being calculated basing on datetime. Like here:
import datetime
def get_dates_filter():
lastday = datetime.date.today().replace(day=1) - datetime.timedelta(days=1)
firstday = lastday.replace(day=1)
return firstday, lastday
So probably the issue is comparing two different types of date representation
Upvotes: 1
Views: 3872
Reputation: 863611
In pandas python dates are still poor supported, the best is working with datetimes with no times.
If there are python dates you can convert to strings before to_datetime
:
df['Some_date'] = pd.to_datetime(df['Some_date'].astype(str))
If need remove times from datetimes
in column use:
df['Some_date'] = pd.to_datetime(df['Some_date'].astype(str)).dt.floor('d')
Test:
rng = pd.date_range('2017-04-03', periods=3).date
df = pd.DataFrame({'Some_date': rng})
print (df)
Some_date
0 2017-04-03
1 2017-04-04
2 2017-04-05
print (type(df.loc[0, 'Some_date']))
<class 'datetime.date'>
df['Some_date'] = pd.to_datetime(df['Some_date'].astype(str))
print (df)
Some_date
0 2017-04-03
1 2017-04-04
2 2017-04-05
print (type(df.loc[0, 'Some_date']))
<class 'pandas._libs.tslibs.timestamps.Timestamp'>
print (df['Some_date'].dtype)
datetime64[ns]
Upvotes: 1