Reputation: 183
I want to create a custom Merge layer using the tf.keras
API. However, the new API hides the keras.layers.merge._Merge
class that I want to inherit from.
The purpose of this is to create a Layer that can perform a weighted sum/merge of the outputs of two different layers. Before, and in keras
python API (not the one included in tensorflow.keras
) I could inherit from keras.layers.merge._Merge
class, which is now not accessible from tensorflow.keras
.
Where before I could do this
class RandomWeightedAverage(keras.layers.merge._Merge):
def __init__(self, batch_size):
super().__init__()
self.batch_size = batch_size
def _merge_function(self, inputs):
alpha = K.random_uniform((self.batch_size, 1, 1, 1))
return (alpha * inputs[0]) + ((1 - alpha) * inputs[1])
Now I cannot use the same logic if using tensorflow.keras
class RandomWeightedAverage(tf.keras.layers.merge._Merge):
def __init__(self, batch_size):
super().__init__()
self.batch_size = batch_size
def _merge_function(self, inputs):
alpha = K.random_uniform((self.batch_size, 1, 1, 1))
return (alpha * inputs[0]) + ((1 - alpha) * inputs[1])
Produces
AttributeError: module 'tensorflow.python.keras.api._v1.keras.layers' has no attribute 'merge'
I have also tried inheriting from Layer
class instead
class RandomWeightedAverage(tensorflow.keras.layers.Layer):
def __init__(self, batch_size):
super().__init__()
self.batch_size = batch_size
def call(self, inputs):
alpha = K.random_uniform((self.batch_size, 1, 1, 1))
return (alpha * inputs[0]) + ((1 - alpha) * inputs[1])
which gives me a layer with output shape equals to multiple
, whereas I want the output shape to be well defined. I further attempted
class RandomWeightedAverage(tensorflow.keras.layers.Layer):
def __init__(self, batch_size):
super().__init__()
self.batch_size = batch_size
def call(self, inputs):
alpha = K.random_uniform((self.batch_size, 1, 1, 1))
return (alpha * inputs[0]) + ((1 - alpha) * inputs[1])
def compute_output_shape(self, input_shape):
return input_shape[0]
But this did not solve the multiple
ambiguity as output shape.
Upvotes: 6
Views: 6669
Reputation: 741
I have slightly modified your code to use tf.random_uniform
instead of K.random_uniform
and it's working fine on 1.13.1 and 1.14.0 (full snippet and resulting model.summary()
below).
import tensorflow as tf
print(tf.__version__)
class RandomWeightedAverage(tf.keras.layers.Layer):
def __init__(self, batch_size):
super().__init__()
self.batch_size = batch_size
def call(self, inputs, **kwargs):
alpha = tf.random_uniform((self.batch_size, 1, 1, 1))
return (alpha * inputs[0]) + ((1 - alpha) * inputs[1])
def compute_output_shape(self, input_shape):
return input_shape[0]
x1 = tf.keras.layers.Input((32, 32, 1))
x2 = tf.keras.layers.Input((32, 32, 1))
y = RandomWeightedAverage(4)(inputs=[x1, x2])
model = tf.keras.Model(inputs=[x1, x2], outputs=[y])
print(model.summary())
Upvotes: 7