Reputation: 2953
How to write an early-return piece of code in scala with no returns/breaks?
For example
for i in 0..10000000
if expensive_operation(i)
return i
return -1
Upvotes: 6
Views: 1818
Reputation: 21
There a lot of better answer here but I think a 'while' could work just fine in that situation.
So, this code
for i in 0..10000000
if expensive_operation(i)
return i
return -1
could be rewritten as
var i = 0
var result = false
while(!result && i<(10000000-1)) {
i = i+1
result = expensive_operation(i)
}
After the 'while' the variable 'result' will tell if it succeed or not.
Upvotes: 1
Reputation: 22850
Since you asked for intuition to solve this problem generically. Let me start from the basis.
Scala is (between other things) a functional programming language, as such there is a very important concept for us. And it is that we write programs by composing expressions
rather than statements
.
Thus, the concept of return value for us means the evaluation of an expression
.
(Note this is related to the concept of referential transparency).
val a = expr // a is bounded to the evaluation of expr,
val b = (a, a) // and they are interchangeable, thus b === (expr, expr)
How this relates to your question. In the sense that we really do not have control structures but complex expressions. For example an if
val a = if (expr) exprA else exprB // if itself is an expression, that returns other expressions.
Thus instead of doing something like this:
def foo(a: Int): Int =
if (a != 0) {
val b = a * a
return b
}
return -1
We would do something like:
def foo(a: Int): Int =
if (a != 0)
a * a
else
-1
Because we can bound all the if
expression itself as the body of foo.
Now, returning to your specific question. How can we early return a cycle
?
The answer is, you can't, at least not without mutations. But, you can use a higher concept, instead of iterating, you can traverse something. And you can do that using recursion
.
Thus, let's implement ourselves the find
proposed by @Thilo, as a tail-recursive
function.
(It is very important that the function is recursive by tail, so the compiler optimizes it as something equivalent to a while loop, that way we will not blow up the stack).
def find(start: Int, end: Int, step: Int = 1)(predicate: Int => Boolean): Option[Int] = {
@annotation.tailrec
def loop(current: Int): Option[Int] =
if (current == end)
None // Base case.
else if (predicate(current))
Some(current) // Early return.
else
loop(current + step) // Recursive step.
loop(current = start)
}
find(0, 10000)(_ == 10)
// res: Option[Int] = Some(10)
Or we may generalize this a little bit more, let's implement find for Lists of any kind of elements.
def find[T](list: List[T])(predicate: T => Boolean): Option[T] = {
@annotation.tailrec
def loop(remaining: List[T]): Option[T] =
remaining match {
case Nil => None
case t :: _ if (predicate(t)) => Some(t)
case _ :: tail => loop(remaining = tail)
}
loop(remaining = list)
}
Upvotes: 4
Reputation: 14803
You can use dropWhile
Here an example:
Seq(2,6,8,3,5).dropWhile(_ % 2 == 0).headOption.getOrElse(default = -1) // -> 8
And here you find more scala-takewhile-example
With your example
(0 to 10000000).dropWhile(!expensive_operation(_)).headOption.getOrElse(default = -1)`
Upvotes: 5
Reputation: 16085
This is not necessarily the best solution from a practical perspective but I still wanted to add it for educational purposes:
import scala.annotation.tailrec
def expensiveOperation(i: Int): Boolean = ???
@tailrec
def findFirstBy[T](f: (T) => Boolean)(xs: Seq[T]): Option[T] = {
xs match {
case Seq() => None
case Seq(head, _*) if f(head) => Some(head)
case Seq(_, tail@_*) => findFirstBy(f)(tail)
}
}
val result = findFirstBy(expensiveOperation)(Range(0, 10000000)).getOrElse(-1)
Please prefer collections methods (dropWhile
, find
, ...) in your production code.
Upvotes: 2