Reputation: 3
I am looking to accelerate the calculation of an approximate weighted covariance.
Specifically, I have a Eigen::VectorXd(N) w
and a Eigen::MatrixXd(M,N) points
. I'd like to calculate the sum of w(i)*points.col(i)*(points.col(i).transpose())
.
I am using a for loop but would like to see if I can go faster:
Eigen::VectorXd w = Eigen::VectorXd(N) ;
Eigen::MatrixXd points = Eigen::MatrixXd(M,N) ;
Eigen::MatrixXd tempMatrix = Eigen::MatrixXd(M,M) ;
for (int i=0; i < N ; i++){
tempMatrix += w(i)*points.col(i)*(points.col(i).transpose());
}
Looking forward to see what can be done!
Upvotes: 0
Views: 146
Reputation: 18827
The following should work:
Eigen::MatrixXd tempMatrix; // not necessary to pre-allocate
// assigning the product allocates tempMatrix if needed
// noalias() tells Eigen that no factor on the right aliases with tempMatrix
tempMatrix.noalias() = points * w.asDiagonal() * points.adjoint();
or directly:
Eigen::MatrixXd tempMatrix = points * w.asDiagonal() * points.adjoint();
If M
is really big, it can be significantly faster to just compute one side and copy it (if needed):
Eigen::MatrixXd tempMatrix(M,M);
tempMatrix.triangularView<Eigen::Upper>() = points * w.asDiagonal() * points.adjoint();
tempMatrix.triangularView<Eigen::StrictlyLower>() = tempMatrix.adjoint();
Note that .adjoint()
is equivalent to .transpose()
for non-complex scalars, but with the former the code works as well if points
and the result where MatrixXcd
instead (w
must still be real, if the result must be self-adjoint).
Also, notice that the following (from your original code) does not set all entries to zero:
Eigen::MatrixXd tempMatrix = Eigen::MatrixXd(M,M);
If you want this, you need to write:
Eigen::MatrixXd tempMatrix = Eigen::MatrixXd::Zero(M,M);
Upvotes: 1