Reputation: 315
I am trying to use GEKKO on PYTHON to control the level of a CSTR tank while manipulating the inlet flow q. I tried the same problem using a pid controller and it worked. However, on GEKKO the height is not tracking its setpoint. Once I did the doublet test: at a flow rate of 200, the height reached 800 and as I decreased the flowrate to 2, the height was about 0. However, when im putting the height setpoint in GEKKO as 700 or 800, the flowrate is not stopping at 200, it is continuously increasing indefinitely. in addition, I tried putting qout=5.0, Ac=30 and h0=50, it also didn't work.
Below is my code:
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from gekko import GEKKO
# Steady State Initial Condition
u2_ss=10.0
h_ss=50.0
x0 = np.empty(1)
x0[0]= h_ss
#%% GEKKO nonlinear MPC
m = GEKKO(remote=False)
m.time = [0,0.02,0.04,0.06,0.08,0.1,0.12,0.15,0.2]
Ac=30.0
# initial conditions
h0=50.0
q0=10.0
m.q=m.MV(value=q0,lb=0,ub=100)
m.h= m.CV(value=h0)
m.qout=m.Param(value=5)
m.Equation(m.h.dt()==(m.q- m.qout)/Ac)
#MV tuning
m.q.STATUS = 1
m.q.FSTATUS = 0
m.q.DMAX = 100
m.q.DMAXHI = 5
m.q.DMAXLO = -100
#CV tuning
m.h.STATUS = 1
m.h.FSTATUS = 1
m.h.TR_INIT = 2
m.h.TAU = 1.0
m.h.SP = 55.0
m.options.CV_TYPE = 2
m.options.IMODE = 6
m.options.SOLVER = 3
#%% define CSTR model
def cstr(x,t,u2,Ac):
q=u2
Ac=30.0
# States (2):
# the height of the tank (m)
h=x[0]
# Parameters:
# Calculate height derivative
dhdt=(q-5.0)/Ac
# Return xdot:
xdot = np.zeros(1)
xdot[0]= dhdt
return xdot
# Time Interval (min)
t = np.linspace(0,6,100)
# Store results for plotting
hsp=np.ones(len(t))*h_ss
h=np.ones(len(t))*h_ss
u2 = np.ones(len(t)) * u2_ss
# Set point steps
hsp[0:50] = 55.0
hsp[100:150]=70.0
# Create plot
plt.figure(figsize=(10,7))
plt.ion()
plt.show()
# Simulate CSTR
for i in range(len(t)-1):
# simulate one time period (0.05 sec each loop)
ts = [t[i],t[i+1]]
y = odeint(cstr,x0,ts,args=(u2[i+1],Ac))
# retrieve measurements
h[i+1]= y[-1][0]
# insert measurement
m.h.MEAS=h[i+1]
m.h.SP=hsp[i+1]
# solve MPC
m.solve(disp=True)
# retrieve new q value
u2[i+1] = m.q.NEWVAL
# update initial conditions
x0[0]= h[i+1]
#%% Plot the results
plt.clf()
plt.subplot(2,1,1)
plt.plot(t[0:i],u2[0:i],'b--',linewidth=3)
plt.ylabel('inlet flow')
plt.subplot(2,1,2)
plt.plot(t[0:i],hsp[0:i],'g--',linewidth=3,label=r'$h_{sp}$')
plt.plot(t[0:i],h[0:i],'k.-',linewidth=3,label=r'$h_{meas}$')
plt.xlabel('time')
plt.ylabel('tank level')
plt.legend(loc='best')
plt.draw()
plt.pause(0.01)
Upvotes: 2
Views: 352
Reputation: 14346
The problem is with your input to the simulator y = odeint(cstr,x0,ts,args=(u2[i+1],Ac))
. It should be using the value from the prior loop: y = odeint(cstr,x0,ts,args=(u2[i],Ac))
. Here is an updated script.
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from gekko import GEKKO
# Steady State Initial Condition
u2_ss=10.0
h_ss=50.0
x0 = np.empty(1)
x0[0]= h_ss
#%% GEKKO nonlinear MPC
m = GEKKO(remote=False)
m.time = [0,0.02,0.04,0.06,0.08,0.1,0.12,0.15,0.2]
Ac=30.0
# initial conditions
h0=50.0
q0=10.0
m.q=m.MV(value=q0,lb=0,ub=100)
m.h= m.CV(value=h0)
m.qout=m.Param(value=5)
m.Equation(Ac * m.h.dt()==m.q- m.qout)
#MV tuning
m.q.STATUS = 1
m.q.FSTATUS = 0
m.q.DMAX = 100
m.q.DMAXHI = 5
m.q.DMAXLO = -100
#CV tuning
m.h.STATUS = 1
m.h.FSTATUS = 1
m.h.TR_INIT = 2
m.h.TAU = 1.0
m.h.SP = 55.0
m.options.CV_TYPE = 2
m.options.IMODE = 6
m.options.SOLVER = 3
#%% define CSTR model
def cstr(x,t,u2,Ac):
q=u2
Ac=30.0
# States (2):
# the height of the tank (m)
h=x[0]
# Parameters:
# Calculate height derivative
dhdt=(q-5)/Ac
# Return xdot:
xdot = np.zeros(1)
xdot[0]= dhdt
return xdot
# Time Interval (min)
t = np.linspace(0,6,100)
# Store results for plotting
hsp=np.ones(len(t))*h_ss
h=np.ones(len(t))*h_ss
u2 = np.ones(len(t)) * u2_ss
# Set point steps
hsp[0:50] = 55.0
hsp[100:150]=70.0
# Create plot
plt.figure(figsize=(10,7))
plt.ion()
plt.show()
# Simulate CSTR
for i in range(len(t)-1):
# simulate one time period (0.05 sec each loop)
ts = [t[i],t[i+1]]
y = odeint(cstr,x0,ts,args=(u2[i],Ac))
# retrieve measurements
h[i+1]= y[-1][0]
# insert measurement
m.h.MEAS=h[i+1]
m.h.SP=hsp[i+1]
# solve MPC
m.solve(disp=False)
# retrieve new q value
u2[i+1] = m.q.NEWVAL
# update initial conditions
x0[0]= h[i+1]
#%% Plot the results
if i%10==0:
plt.clf()
plt.subplot(2,1,1)
plt.plot(t[0:i],u2[0:i],'b--',linewidth=3)
plt.ylabel('inlet flow')
plt.subplot(2,1,2)
plt.plot(t[0:i],hsp[0:i],'g--',linewidth=3,label=r'$h_{sp}$')
plt.plot(t[0:i],h[0:i],'k.-',linewidth=3,label=r'$h_{meas}$')
plt.xlabel('time')
plt.ylabel('tank level')
plt.legend(loc='best')
plt.draw()
plt.pause(0.01)
Upvotes: 2