Reputation: 37
Creating a multiple columns from array column
Dataframe
Car name | details
Toyota | [[year,2000],[price,20000]]
Audi | [[mpg,22]]
Expected dataframe
Car name | year | price | mpg
Toyota | 2000 | 20000 | null
Audi | null | null | 22
Upvotes: 0
Views: 2162
Reputation: 812
You can try this
Let's define the data
scala> val carsDF = Seq(("toyota",Array(("year", 2000), ("price", 100000))), ("Audi", Array(("mpg", 22)))).toDF("car", "details")
carsDF: org.apache.spark.sql.DataFrame = [car: string, details: array<struct<_1:string,_2:int>>]
scala> carsDF.show(false)
+------+-----------------------------+
|car |details |
+------+-----------------------------+
|toyota|[[year,2000], [price,100000]]|
|Audi |[[mpg,22]] |
+------+-----------------------------+
Splitting the data & accessing the values in the data
scala> carsDF.withColumn("split", explode($"details")).withColumn("col", $"split"("_1")).withColumn("val", $"split"("_2")).select("car", "col", "val").show
+------+-----+------+
| car| col| val|
+------+-----+------+
|toyota| year| 2000|
|toyota|price|100000|
| Audi| mpg| 22|
+------+-----+------+
Define the list of columns that are required
scala> val colNames = Seq("mpg", "price", "year", "dummy")
colNames: Seq[String] = List(mpg, price, year, dummy)
Use pivoting on the above defined column names gives required output. By giving new column names in the sequence makes it a single point input
scala> weDF.groupBy("car").pivot("col", colNames).agg(avg($"val")).show
+------+----+--------+------+-----+
| car| mpg| price| year|dummy|
+------+----+--------+------+-----+
|toyota|null|100000.0|2000.0| null|
| Audi|22.0| null| null| null|
+------+----+--------+------+-----+
This seems more elegant & easy way to achieve the output
Upvotes: 1
Reputation: 906
you can do it like that
import org.apache.spark.functions.col
val df: DataFrame = Seq(
("toyota",Array(("year", 2000), ("price", 100000))),
("toyota",Array(("year", 2001)))
).toDF("car", "details")
+------+-------------------------------+
|car |details |
+------+-------------------------------+
|toyota|[[year, 2000], [price, 100000]]|
|toyota|[[year, 2001]] |
+------+-------------------------------+
val newdf = df
.withColumn("year", when(col("details")(0)("_1") === lit("year"), col("details")(0)("_2")).otherwise(col("details")(1)("_2")))
.withColumn("price", when(col("details")(0)("_1") === lit("price"), col("details")(0)("_2")).otherwise(col("details")(1)("_2")))
.drop("details")
newdf.show()
+------+----+------+
| car|year| price|
+------+----+------+
|toyota|2000|100000|
|toyota|2001| null|
+------+----+------+
Upvotes: 1