NaiveBae
NaiveBae

Reputation: 414

Generate dictionary from a pandas dataframe with multiple columns combined as the keys, remaining columns as values?

I'm trying to generate a dictionary from a pandas dataframe. Specifically, I need to:

  1. Take the first (x) columns and use the data points in each of their rows, together, as keys.

  2. Compile a dictionary for each key using the remaining data points in the row as values, as a list.

Let's use this sample dataframe for the sake of simplicity.

  1. Generate dataframe:
df = pd.DataFrame([
    {'c1':a1, 'c2':110, 'c3':'xyz', 'c4':24}, 
    {'c1':b2,'c2':100, 'c3':'jdf', 'c4':15}, 
    {'c1':a1,'c2':110, 'c3':'kjl', 'c4':125},
    {'c1':b2, 'c2':100, 'c3':'abc', 'c4':71},
])

    c1  c2  c3  c4
0   a1  110 xyz 24
1   b2  100 jdf 15
2   a1  110 kjl 125
3   b2  100 abc 71

  1. Yield the following:
new_dict = some code

new_dict

{('a1', 110): [['xyz', 24], ['kjl', 125]], ('b2', 100): [['jdf', 15], ['abc', 71]]}

I've tried many, many things, including creating a list of tuple lists for the keys, assigning unique lists as keys to a new dictionary (with values empty lists)--but I can't then populate the values.

I'm able to compile a dictionary with a single column as the key, and everything else as needed, like this:

test_dict = {}
for index, row in df.iterrows():
    if row['c1'] in test_dict:
        test_dict[row['c1']].append([row['c2'], row['c3'], row['c4']])
    else:
        test_dict[row['c1']] = []
        test_dict[row['c1']].append([row['c2'], row['c3'], row['c4']])

But I can't make the jump to combining multiple columns as the key.

Upvotes: 1

Views: 2250

Answers (4)

Dani Mesejo
Dani Mesejo

Reputation: 61910

Assuming the following DataFrame:

import pandas as pd

df = pd.DataFrame([
    {'c1': 'a1', 'c2': 110, 'c3': 'xyz', 'c4': 24},
    {'c1': 'b2', 'c2': 100, 'c3': 'jdf', 'c4': 15},
    {'c1': 'a1', 'c2': 110, 'c3': 'kjl', 'c4': 125},
    {'c1': 'b2', 'c2': 100, 'c3': 'abc', 'c4': 71},
])

You could groupby, aggregate and then convert to dictionary (to_dict):

groups = df.groupby(['c1', 'c2']).apply(lambda x: x[['c3', 'c4']].values.tolist()).to_dict()
print(groups)

Output

{('a1', 110): [['xyz', 24], ['kjl', 125]], ('b2', 100): [['jdf', 15], ['abc', 71]]}

Upvotes: 1

Acccumulation
Acccumulation

Reputation: 3591

The data you used to create the dataframe doesn't match the dataframe that you present as an example, but what you seem to be wanting can be done with:

x = 2
key_cols =  list(df.columns[:x])
value_cols = df.columns[x:]
new_dict = df.groupby(key_cols).apply(lambda sub_df: sub_df[value_cols].values.tolist()).to_dict()

Upvotes: 0

Quang Hoang
Quang Hoang

Reputation: 150745

You can try this groupby:

(df.groupby(['c1','c2'])
   .apply(lambda x: x[['c3','c4']].values)
   .to_dict()
)

Output:

{('a1', 110): array([['xyz', 24],
        ['kjl', 125]], dtype=object), ('b2', 100): array([['jdf', 15],
        ['abc', 71]], dtype=object)}

Upvotes: 0

vb_rises
vb_rises

Reputation: 1907

test_dict = {}
for index, row in df.iterrows():
    if (row['c1'], row['c2']) in test_dict:
        test_dict[(row['c1'], row['c2'])].append([row['c3'], row['c4']])
    else:
        test_dict[(row['c1'], row['c2'])] = [[row['c3'], row['c4']]]

test_dict

{('a1', 100): [['xyz', 24], ['kjl', 125]], ('b2', 110): [['jdf', 15], ['abc', 71]]}

Upvotes: 0

Related Questions