Reputation: 3811
I have a table with few flag columns.(3 agencies rated bank; all cases mutually exclusive => at one time only one flag was ON. If flag1 has a value, flag2 and flag3 wont have any value and so on)
BankName Flag1 Flag2 Flag3
B1 TRUE
B2 FALSE
B3 TRUE
B4 FALSE
B5 TRUE
and so on.
What I want:
BankName Flag1 Flag2 Flag3 Anyflag
B1 TRUE TRUE
B2 FALSE FALSE
B3 TRUE TRUE
B4 FALSE FALSE
B5 TRUE TRUE
Basically I wish to combine the flags overall in a separate column. I have tried merge, concat and they dont seem to work on boolean columns.
Tried:
[IN]:
df['Any flag']=pd.concat(df['Flag1'], df['Flag2'], df['Flag3'])
[OUT]
TypeError: first argument must be an iterable of pandas objects, you
passed an object of type "Series"
[IN]:
df['Any flag']=pd.concat(df['Flag1'], df['Flag2'], df['Flag3'], axis=0)
[OUT]
TypeError: concat() got multiple values for argument 'axis'
Please help.
Upvotes: 4
Views: 7990
Reputation: 82765
Use any(axis='columns')
Ex:
data = [ ['B1', True, '', ''],
['B2', '', '', False],
['B3', '', True, ''],
['B4', False, '', ''],
['B5','', True, '']]
df = pd.DataFrame(data, columns=['BankName', 'Flag1', 'Flag2', 'Flag3'])
df["Anyflag"] = df[['Flag1', 'Flag2', 'Flag3']].any(axis='columns')
print(df)
Output:
BankName Flag1 Flag2 Flag3 Anyflag
0 B1 True True
1 B2 False False
2 B3 True True
3 B4 False False
4 B5 True True
Upvotes: 11