Reputation: 2527
I am used to seeing relational databases where distinct entities are stored in different tables. (simple example: Country, State, City). Recently I been seeing more cases where distinct but similar entities are bundled into same table combined with different Views. I supposed this can economize on tables and data access programs (maybe at the expense of clarity and flexibility). Re-reading definition of normalized databases, I don't think this breaks any rules, but it seems less intuitive and through back to old mainframe "Miscellaneous" tables where you put anything that was forgotten in design stage. See 2 examples below: Multi-table solution vs Single table solution. Is this phenomenon part of a data or programming design pattern and have a name?
Upvotes: 0
Views: 103
Reputation: 96385
If you have small dedicated tables, then the database can easily cache the ones it needs in memory.
If you take what would otherwise be small tables and cram them together into one, the database doesn't know which entries are important to cache and which aren't.
More importantly, there is more opportunity for errors because you can inadvertently type in the wrong type code and end up joining to something irrelevant, with no RI or typechecking to warn you. If you use small dedicated tables then you can specify RI constraints.
Thinking back to a place where I saw the single monster-lookup-table pattern done, I think the attraction was that developers can add more kinds of entries without needing DBA intervention to create more tables. There were a lot of developers and only a few DBAs and this was how the DBAs avoided getting sucked into having to create dedicated lookup tables every time a new type of lookup entry was introduced. (Apparently granting create table rights in dev was not acceptable for the DBAs there.)
This seems like a workaround for environments where database schema changes are hard to come by. But another consideration is it may be easier to internationalize if all your entries are in one table.
And the pattern has an established name, it's called the One True Lookup Table. The linked article calls it out as an antipattern, and lists more downfalls of this technique. Here is the bulleted list from the article:
It makes the SQL look ugly.
Many statements will require multiple joins to the lookup table. The extra join columns make the statements look bigger and scarier. There will be the same number of joins when using separate lookup tables, but those joins will be simpler.
Multiple references to the same table can make it hard to determine what is happening in the execution plan, as you will see those repeated references there, and have to refer to the predicates to understand the context of table reference. If you were using separate lookup tables, it would be clear which table you were referring to at any point of the execution plan.
You can't foreign key to this type of table. Technically you can if you are willing to put both columns (lookup_type_code and lookup_key) in the table, but you won't because it is ugly. This means there is a good chance your data integrity will be compromised over time. It's really easy to foreign key to individual lookup tables, and therefore protect your data.
It's hard to control the contents of the table. It's a shared resource, so check constraints and triggers are problematic. If you need users to have different privileges, depending on which lookup they are dealing with, things are going to get messy. That would be really easy with separate lookup tables.
If you need to make a change for one reference type, like extending the size of the key or value, it affects all reference data. Using separate lookup tables isolates the change.
Over time, many reference tables take on additional data. To model that you would need to either split out that reference data from this shared lookup table, or start adding optional columns to cope with the "one-off" issues. A change like this is really simple for separate lookup tables.
Data types matter. You should always use the correct data type, as it will reduce the number of data type conversions needed. Implicit data type conversions are bugs waiting to happen!
Performance can be a problem with the OTLT approach as it's hard for the optimizer to make sound judgements about the data. The optimizer cares about cardinality, but it may be hard to make that decision if you are dealing with a large number of rows, most of which are irrelevant in any one specific context. The optimizer also cares about high/low values, but these are not be relevant to any one lookup, but shared. We've also mentioned you probably won't foreign key to this data, which will reduce the amount of information the optimizer has when making its decision. You may have artificially made columns optional, that are actually mandatory, a key must have a value, but which column? I think you get the message.
Upvotes: 1
Reputation: 126
I think, if you need name dictionary only ( for spellchecking or something like ) second approach is good enough. Otherwise, if objects have some additional specific fields second approach is very bed.
Upvotes: 1