Reputation: 441
I'm using nvidia gforce 1050 ti
I have a model in keras which works fine no memory allocation error appears but when I run a much more simple model in tensorflow i get the error blow, to see errors: find in this post ERROR==== to see tf model: find TENSORFLOW=== to see keras model: find KERAS===
I don't understand this because batch size(128) is the same i have tensorflow-gpu (pip installed) so how come keras runs fine (with much more complex model) and tensorflow doesn't?
thanks!
2019-10-04 11:45:58.450155: W tensorflow/core/common_runtime/bfc_allocator.cc:237] Allocator (GPU_0_bfc) ran out of memory trying to allocate 1.83GiB with freed_by_count=0. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory were available. 2019-10-04 11:45:58.450838: W tensorflow/core/common_runtime/bfc_allocator.cc:237] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.84GiB with freed_by_count=0. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory were available. 2019-10-04 11:46:08.451808: W tensorflow/core/common_runtime/bfc_allocator.cc:314] Allocator (GPU_0_bfc) ran out of memory trying to allocate 1.22GiB (rounded to 1310720000). Current allocation summary follows. 2019-10-04 11:46:08.452025: I tensorflow/core/common_runtime/bfc_allocator.cc:764] Bin (256): Total Chunks: 33, Chunks in use: 33. 8.3KiB allocated for chunks. 8.3KiB in use in bin. 2.6KiB client-requested in use in bin. 2019-10-04 11:46:08.452239: I tensorflow/core/common_runtime/bfc_allocator.cc:764] Bin (512): Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin. 2019-10-04 11:46:08.452436: I tensorflow/core/common_runtime/bfc_allocator.cc:764] Bin (1024): Total Chunks: 1, Chunks in use: 1. 1.3KiB allocated for chunks. 1.3KiB in use in bin. 1.0KiB client-requested in use in bin. 2019-10-04 11:46:08.452648: I tensorflow/core/common_runtime/bfc_allocator.cc:764] Bin (2048): Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin. 2019-10-04 11:46:08.452854: I tensorflow/core/common_runtime/bfc_allocator.cc:764] Bin (4096): Total Chunks: 9, Chunks in use: 9. 44.0KiB allocated for chunks. 44.0KiB in use in bin. 44.0KiB client-requested in use in bin. 2019-10-04 11:46:08.453073: I tensorflow/core/common_runtime/bfc_allocator.cc:764] Bin (8192): Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin. 2019-10-04 11:46:08.453276: I tensorflow/core/common_runtime/bfc_allocator.cc:764] Bin (16384): Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin. 2019-10-04 11:46:08.453482: I tensorflow/core/common_runtime/bfc_allocator.cc:764] Bin (32768): Total Chunks: 4, Chunks in use: 4. 160.0KiB allocated for chunks. 160.0KiB in use in bin. 160.0KiB client-requested in use in bin. 2019-10-04 11:46:08.453706: I tensorflow/core/common_runtime/bfc_allocator.cc:764] Bin (65536): Total Chunks: 5, Chunks in use: 5. 384.0KiB allocated for chunks. 384.0KiB in use in bin. 334.1KiB client-requested in use in bin. 2019-10-04 11:46:08.453934: I tensorflow/core/common_runtime/bfc_allocator.cc:764] Bin (131072): Total Chunks: 4, Chunks in use: 4. 512.0KiB allocated for chunks. 512.0KiB in use in bin. 512.0KiB client-requested in use in bin.
Tensorflow:
x = tf.placeholder(tf.float32,shape=[None,32,32,3])
y = tf.placeholder(dtype=tf.float32,shape=[None,CLASSES])
keep_prob = tf.placeholder(dtype=tf.float32)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
conv1c,rlu1c,max1 = createConvBlock(x,filters=32)
conv2c,rlu2c,max2 = createConvBlock(max1,filters=64)
conv3c,rlu3c,max3 = createConvBlock(max2,filters=128)
conv3c,rlu3c,max3 = createConvBlock(max3,filters=128)
flat = flatten(max3)
dropout = dense(flat,1024,True,keep_prob)
dw4,db4= dense(dropout,CLASSES)
y_hat = tf.matmul(dropout,dw4)+db4
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=y_hat))
train_step = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cross_entropy)
BATCH = 128
class CifarHelper():
def __init__(self):
self.i = 0
(train_x, train_y), (test_x, test_y) = tf.keras.datasets.cifar10.load_data()
self.all_train_batches = train_x
self.test_batch = test_x
self.training_images = train_x / 255
self.training_labels = to_onehot(train_y,10)
self.test_images = test_x / 255
self.test_labels = to_onehot(test_y,10)
def next_batch(self, batch_size):
x = self.training_images[self.i:self.i + batch_size]
y = self.training_labels[self.i:self.i + batch_size]
self.i = (self.i + batch_size) % len(self.training_images)
return x, y
ch = CifarHelper()
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
for i in tqdm(range(EPOCHES)):
a,b = ch.next_batch(BATCH)
train_step.run(feed_dict={x: a,y :b,keep_prob: 1.0})
if i % 100 == 0:
matches = tf.equal(tf.argmax(y_hat, 1), tf.argmax(y, 1))
acc = tf.reduce_mean(tf.cast(matches, tf.float32))
test_acc[i//100] = sess.run(acc, feed_dict={x: ch.test_images, y: ch.test_labels, keep_prob: 1.0})
def createConvBlock(xinput,filters,stride = 1,withMaxPoll=True,pool_kernel=[1,2,2,1],pool_stride=[1,2,2,1]):
shape = [s.value for s in xinput.get_shape()]
shape = [3,3,shape[3],filters]
wtb = tf.truncated_normal(shape=shape, stddev=0.1)
w = tf.Variable(wtb)
b = tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[filters]))
conv = tf.nn.conv2d(xinput,w,strides=[1,stride,stride,1],padding='SAME')
rlu = tf.nn.relu(conv + b)
if withMaxPoll:
maxpool = tf.nn.max_pool2d(rlu,ksize=pool_kernel,strides=pool_stride,padding='SAME')
return conv,rlu,maxpool
return conv, rlu
def flatten(layer):
pooling_size = np.product([s.value for s in layer.get_shape()[1:]])
flat = tf.reshape(layer,shape=[-1,pooling_size])
print('flatt {}'.format(flat.get_shape()))
return flat
def dense(layer,filters,withDropouts = False,keep_prob = None):
shape = [s.value for s in layer.get_shape()[1:]] + [filters]
norm = np.product(shape)
w = tf.Variable(
tf.truncated_normal(shape=shape, stddev=0.1))
b = tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[filters]))
z = tf.nn.relu(tf.matmul(layer, w) + b)
if withDropouts:
dropout = tf.nn.dropout(z,keep_prob)
return dropout
return w,b
Keras:
batch_size = 128
num_classes = 10
epochs = 5
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(LeakyReLU())
model.add(Conv2D(32,kernel_size=(3,3),padding='SAME'))
model.add(LeakyReLU())
model.add(Conv2D(32,kernel_size=(3,3),padding='SAME'))
model.add(LeakyReLU())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3),name='cnv',padding='SAME'))
model.add(LeakyReLU())
model.add(Conv2D(64, (3, 3),padding='SAME'))
model.add(LeakyReLU())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, (3, 3),padding='SAME'))
model.add(LeakyReLU())
model.add(Conv2D(128, (3, 3),padding='SAME'))
model.add(LeakyReLU())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1024))
model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax', name='preds'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adam(),
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
Upvotes: 2
Views: 2044
Reputation: 1
You should decrease your batch size . Check your code on a batch size of 64 if still does not work decrease it more to 32 or 16 or 8 . This will cause an increase in the execution time of the epoch.
Upvotes: -2