Reputation: 3043
I have a PySpark data frame in which I have separate columns for names, types, days and values. An example of the dataframe can be seen below:
+------+----+---+-----+
| Name|Type|Day|Value|
+------+----+---+-----+
| name1| a| 1| 140|
| name2| a| 1| 180|
| name3| a| 1| 150|
| name4| b| 1| 145|
| name5| b| 1| 185|
| name6| c| 1| 155|
| name7| c| 1| 160|
| name8| a| 2| 120|
| name9| a| 2| 110|
|name10| b| 2| 125|
|name11| b| 2| 185|
|name12| c| 3| 195|
+------+----+---+-----+
For a selected value of Type
, I want to create separate dataframes depending on the unique values of the column titled Day
. Let's say, I have chosen a
as my preferred Type
. In the aforementioned example, I have three unique values of Day
(viz. 1, 2 , 3
). For each unique value of Day
which has a row with the chosen Type
a
- (that is days 1
and 2
in the above data), I want to create a dataframe which has all rows with the chosen chosen Type
and Day
. In the example mentioned above, I will have two dataframe which will look as below
+------+----+---+-----+
| Name|Type|Day|Value|
+------+----+---+-----+
| name1| a| 1| 140|
| name2| a| 1| 180|
| name3| a| 1| 150|
+------+----+---+-----+
and
+------+----+---+-----+
| Name|Type|Day|Value|
+------+----+---+-----+
| name8| a| 2| 120|
| name9| a| 2| 110|
+------+----+---+-----+
How can I do this? In the actual data that I will be working with, I have millions of columns. So, I want to know about the most efficient way in which I can realize the above mentioned aim.
You can use the below mentioned code to generate the example given above.
from pyspark.sql import *
import numpy as np
Stats = Row("Name", "Type", "Day", "Value")
stat1 = Stats('name1', 'a', 1, 140)
stat2 = Stats('name2', 'a', 1, 180)
stat3 = Stats('name3', 'a', 1, 150)
stat4 = Stats('name4', 'b', 1, 145)
stat5 = Stats('name5', 'b', 1, 185)
stat6 = Stats('name6', 'c', 1, 155)
stat7 = Stats('name7', 'c', 1, 160)
stat8 = Stats('name8', 'a', 2, 120)
stat9 = Stats('name9', 'a', 2, 110)
stat10 = Stats('name10', 'b', 2, 125)
stat11 = Stats('name11', 'b', 2, 185)
stat12 = Stats('name12', 'c', 3, 195)
Upvotes: 1
Views: 1738
Reputation: 7419
You can just use df.repartition("Type", "Day")
Docs for the same.
When I validate using the following function, I get the mentioned output
def validate(partition):
count = 0
for row in partition:
print(row)
count += 1
print(count)
+------+--------------------+-------+-------+
|amount| trans_date|user_id|row_num|
+------+--------------------+-------+-------+
| 99.1|2019-06-04T00:00:...| 101| 1|
| 89.27|2019-06-04T00:00:...| 102| 2|
| 89.1|2019-03-04T00:00:...| 102| 3|
| 73.11|2019-09-10T00:00:...| 103| 4|
|-69.81|2019-09-11T00:00:...| 101| 5|
| 12.51|2018-12-14T00:00:...| 101| 6|
| 43.23|2018-09-11T00:00:...| 101| 7|
+------+--------------------+-------+-------+
After df.repartition("user_id")
I get the following:
Row(amount=73.11, trans_date='2019-09-10T00:00:00.000+05:30', user_id='103', row_num=4)
1
Row(amount=89.27, trans_date='2019-06-04T00:00:00.000+05:30', user_id='102', row_num=2)
Row(amount=89.1, trans_date='2019-03-04T00:00:00.000+05:30', user_id='102', row_num=3)
2
Row(amount=99.1, trans_date='2019-06-04T00:00:00.000+05:30', user_id='101', row_num=1)
Row(amount=-69.81, trans_date='2019-09-11T00:00:00.000+05:30', user_id='101', row_num=5)
Row(amount=12.51, trans_date='2018-12-14T00:00:00.000+05:30', user_id='101', row_num=6)
Row(amount=43.23, trans_date='2018-09-11T00:00:00.000+05:30', user_id='101', row_num=7)
4
Upvotes: 2