Reputation: 93
I want to get familiar with the fourier based convolutions. Therefore, I created a small example using numpy.fft
and scipy.signal.convolve
. However, the results of the two operations are different and
I do not know why.
Does someone has an idea?
I have already tried to use the different modes of scipy.signal.convolve
.
The example:
import numpy as np
from scipy.signal import convolve
# Generate example data
data = np.array([1, 1, 1, 1, 1, 1])
kernel = np.array([0, 1, 2, 1, 0, 0])
# Using scipy.signal.convolve
A = convolve(kernel, data, mode='full')
B = convolve(kernel, data, mode='valid')
C = convolve(kernel, data, mode='same')
# Using the convolution theorem
D = np.fft.ifft(np.fft.fft(kernel) * np.fft.fft(data))
The results are:
A = array([0, 1, 3, 4, 4, 4, 4, 3, 1, 0, 0])
B = array([4])
C = array([3, 4, 4, 4, 4, 3])
D = array([4.+0.j, 4.+0.j, 4.+0.j, 4.+0.j, 4.+0.j, 4.+0.j])
Upvotes: 1
Views: 2158
Reputation: 212969
You need to pad data
and kernel
with N-1 zeroes to avoid circular convolution...
import numpy as np
from scipy.signal import convolve
# Generate example data
data = np.array([1, 1, 1, 1, 1, 1])
kernel = np.array([0, 1, 2, 1, 0, 0])
# Using scipy.signal.convolve
A = convolve(kernel, data, mode='full')
# Using the convolution theorem - need to pad with N-1 zeroes
data = np.array([1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0])
kernel = np.array([0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0])
D = np.fft.ifft(np.fft.fft(kernel) * np.fft.fft(data))
print (A)
print (D)
[0 1 3 4 4 4 4 3 1 0 0]
[2.4e-16+0.j 1.0e+00+0.j 3.0e+00+0.j 4.0e+00+0.j 4.0e+00+0.j 4.0e+00+0.j
4.0e+00+0.j 3.0e+00+0.j 1.0e+00+0.j 3.2e-16+0.j 1.6e-16+0.j]
Upvotes: 2