Reputation: 739
I have a DataFrame like this:
date | type | column1
----------------------------
2019-01-01 | A | 1
2019-02-01 | A | 1
2019-03-01 | A | 1
2019-04-01 | A | 0
2019-05-01 | A | 1
2019-06-01 | A | 1
2019-07-01 | B | 1
2019-08-01 | B | 1
2019-09-01 | B | 0
I want to have a column called "streak" that has a streak, but grouped by column "type":
date | type | column1 | streak
-------------------------------------
2019-01-01 | A | 1 | 1
2019-02-01 | A | 1 | 2
2019-03-01 | A | 1 | 3
2019-04-01 | A | 0 | 0
2019-05-01 | A | 1 | 1
2019-06-01 | A | 1 | 2
2019-07-01 | B | 1 | 1
2019-08-01 | B | 1 | 2
2019-09-01 | B | 0 | 0
I managed to do it like that:
def streak(df):
grouper = (df.column1 != df.column1.shift(1)).cumsum()
df['streak'] = df.groupby(grouper).cumsum()['column1']
return df
df = df.groupby(['type']).apply(streak)
But I'm wondering if it's possible to do it inline without using a groupby and apply, because my DataFrame contains about 100M rows and it takes several hours to process.
Any ideas on how to optimize this for speed?
Upvotes: 3
Views: 122
Reputation: 8033
IIUC, this is what you need.
m = df.column1.ne(df.column1.shift()).cumsum()
df['streak'] =df.groupby([m , 'type'])['column1'].cumsum()
Output
date type column1 streak
0 1/1/2019 A 1 1
1 2/1/2019 A 1 2
2 3/1/2019 A 1 3
3 4/1/2019 A 0 0
4 5/1/2019 A 1 1
5 6/1/2019 A 1 2
6 7/1/2019 B 1 1
7 8/1/2019 B 1 2
8 9/1/2019 B 0 0
Upvotes: 4
Reputation: 59579
You want the cumsum
of 'column1'
grouping by 'type'
+ the cumsum
of a Boolean Series which resets the grouping at every 0.
df['streak'] = df.groupby(['type', df.column1.eq(0).cumsum()]).column1.cumsum()
date type column1 streak
0 2019-01-01 A 1 1
1 2019-02-01 A 1 2
2 2019-03-01 A 1 3
3 2019-04-01 A 0 0
4 2019-05-01 A 1 1
5 2019-06-01 A 1 2
6 2019-07-01 B 1 1
7 2019-08-01 B 1 2
8 2019-09-01 B 0 0
Upvotes: 4