cookie1986
cookie1986

Reputation: 895

How to reconstruct a conversation from Watson Speech-to-Text output?

I have the JSON output from Watson's Speech-to-Text service that I have converted into a list and then into a Pandas data-frame.

I'm trying to identify how to reconstruct the conversation (with timings) akin to the following:

Speaker 0: Said this [00.01 - 00.12]

Speaker 1: Said that [00.12 - 00.22]

Speaker 0: Said something else [00.22 - 00.56]

My data-frame has a row for each word, and columns for the word, its start/end time, and the speaker tag (either 0 or 1).

words = [['said', 0.01, 0.06, 0],['this', 0.06, 0.12, 0],['said', 0.12, 
0.15, 1],['that', 0.15, 0.22, 1],['said', 0.22, 0.31, 0],['something', 
0.31, 0.45, 0],['else', 0.45, 0.56, 0]]

Ideally, what I am looking to create is the following, where words spoken by the same speaker are grouped together, and are broken when the next speaker steps in:

grouped_words = [[['said','this'], 0.01, 0.12, 0],[['said','that'] 0.12, 
0.22, 1],[['said','something','else'] 0.22, 0.56, 0]

UPDATE: As per request, a link to a sample of the JSON file obtained is at https://github.com/cookie1986/STT_test

Upvotes: 0

Views: 254

Answers (1)

zglin
zglin

Reputation: 2919

Should be pretty straightforward to load the speaker labels into a Pandas Dataframe for a nice easy graphical view and then identifying the speaker shifts.

speakers=pd.DataFrame(jsonconvo['speaker_labels']).loc[:,['from','speaker','to']]
convo=pd.DataFrame(jsonconvo['results'][0]['alternatives'][0]['timestamps'])
speakers=speakers.join(convo)

Output:

   from  speaker    to          0     1     2
0  0.01        0  0.06       said  0.01  0.06
1  0.06        0  0.12       this  0.06  0.12
2  0.12        1  0.15       said  0.12  0.15
3  0.15        1  0.22       that  0.15  0.22
4  0.22        0  0.31       said  0.22  0.31
5  0.31        0  0.45  something  0.31  0.45
6  0.45        0  0.56       else  0.45  0.56

From there, you can ID only speaker shifts and collapse the dataframe with a quick loop

ChangeSpeaker=speakers.loc[speakers['speaker'].shift()!=speakers['speaker']].index

Transcript=pd.DataFrame(columns=['from','to','speaker','transcript'])
for counter in range(0,len(ChangeSpeaker)):
    print(counter)
    currentindex=ChangeSpeaker[counter]
    try:
        nextIndex=ChangeSpeaker[counter+1]-1
        temp=speakers.loc[currentindex:nextIndex,:]
    except:
        temp=speakers.loc[currentindex:,:]
Transcript=Transcript.append(pd.DataFrame([[temp.head(1)['from'].values[0],temp.tail(1)['to'].values[0],temp.head(1)['speaker'].values[0],temp[0].tolist()]],columns=['from','to','speaker','transcript']))

You want to take the start point from the first value (hence head) and then the end point from the last vlaue in the temporary dataframe. Additionally, to handle the last speaker case (where you 'd normally get an array out of bounds error, you use a try/catch.

Output:

   from    to speaker               transcript
0  0.01  0.12       0             [said, this]
0  0.12  0.22       1             [said, that]
0  0.22  0.56       0  [said, something, else]

Full Code Here

import json
import pandas as pd

jsonconvo=json.loads("""{
   "results": [
      {
         "alternatives": [
            {
               "timestamps": [
                  [
                     "said", 
                     0.01, 
                     0.06
                  ], 
                  [
                     "this", 
                     0.06, 
                     0.12
                  ], 
                  [
                     "said", 
                     0.12, 
                     0.15
                  ], 
                  [
                     "that", 
                     0.15, 
                     0.22
                  ], 
                  [
                     "said", 
                     0.22, 
                     0.31
                  ], 
                  [
                     "something", 
                     0.31, 
                     0.45
                  ], 
                  [
                     "else", 
                     0.45, 
                     0.56
                  ]
               ], 
               "confidence": 0.85, 
               "transcript": "said this said that said something else "
            }
         ], 
         "final": true
      }
   ], 
   "result_index": 0, 
   "speaker_labels": [
      {
         "from": 0.01, 
         "to": 0.06, 
         "speaker": 0, 
         "confidence": 0.55, 
         "final": false
      }, 
      {
         "from": 0.06, 
         "to": 0.12, 
         "speaker": 0, 
         "confidence": 0.55, 
         "final": false
      }, 
      {
         "from": 0.12, 
         "to": 0.15, 
         "speaker": 1, 
         "confidence": 0.55, 
         "final": false
      }, 
      {
         "from": 0.15, 
         "to": 0.22, 
         "speaker": 1, 
         "confidence": 0.55, 
         "final": false
      }, 
      {
         "from": 0.22, 
         "to": 0.31, 
         "speaker": 0, 
         "confidence": 0.55, 
         "final": false
      }, 
      {
         "from": 0.31, 
         "to": 0.45, 
         "speaker": 0, 
         "confidence": 0.55, 
         "final": false
      }, 
      {
         "from": 0.45, 
         "to": 0.56, 
         "speaker": 0, 
         "confidence": 0.54, 
         "final": false
      }
   ]
}""")



speakers=pd.DataFrame(jsonconvo['speaker_labels']).loc[:,['from','speaker','to']]
convo=pd.DataFrame(jsonconvo['results'][0]['alternatives'][0]['timestamps'])
speakers=speakers.join(convo)

ChangeSpeaker=speakers.loc[speakers['speaker'].shift()!=speakers['speaker']].index


Transcript=pd.DataFrame(columns=['from','to','speaker','transcript'])
for counter in range(0,len(ChangeSpeaker)):
    print(counter)
    currentindex=ChangeSpeaker[counter]
    try:
        nextIndex=ChangeSpeaker[counter+1]-1
        temp=speakers.loc[currentindex:nextIndex,:]
    except:
        temp=speakers.loc[currentindex:,:]



    Transcript=Transcript.append(pd.DataFrame([[temp.head(1)['from'].values[0],temp.tail(1)['to'].values[0],temp.head(1)['speaker'].values[0],temp[0].tolist()]],columns=['from','to','speaker','transcript']))

Upvotes: 1

Related Questions