Reputation: 11
I am in the following situation - I have the following:
a
of n
dimensionst
, an array of k
rows (tuples), each with n
elements. In other words, each row in this array is an index in a
What I want: from a
, return an array b
with k
scalar elements, the i
th element in b
being the result of indexing a
with the i
th tuple from t
.
Seems trivial enough. The following approach, however, does not work
def get(a, t):
# wrong result + takes way too long
return a[t]
I have to resort to doing this iteratively i.e. the following works correctly:
def get(a, t):
res = []
for ind in t:
a_scalar = a
for i in ind:
a_scalar = a_scalar[i]
# a_scalar is now a scalar
res.append(a_scalar)
return res
This works, except for the fact that given that each dimension in a
has over 30 elements, the procedure does get really slow when n
gets to more than 5. I understand that it would be slow regardless, however, I would like to exploit numpy's capabilities as I believe it would speed up this process considerably.
Upvotes: 0
Views: 2077
Reputation: 3824
Explore using np.ravel_multi_index
Create some test data
arr = np.arange(10**4)
arr.shape=10,10,10,10
t = []
for j in range(5):
t.append( tuple(np.random.randint(10, size = 4)))
print(t)
# [(1, 8, 2, 0),
# (2, 3, 3, 6),
# (1, 4, 8, 5),
# (2, 2, 6, 3),
# (0, 5, 0, 2),]
ta = np.array(t).T
print(ta)
# array([[1, 2, 1, 2, 0],
# [8, 3, 4, 2, 5],
# [2, 3, 8, 6, 0],
# [0, 6, 5, 3, 2]])
arr.ravel()[np.ravel_multi_index(tuple(ta), (10,10,10,10))]
# array([1820, 2336, 1485, 2263, 502]
np.ravel_multi_index basically calculates, from the tuple of input arrays, the index into a flattened array that starts with shape (in this case) (10, 10, 10, 10).
Does this do what you need? Is it fast enough?
Upvotes: 0
Reputation: 231385
The key to getting this right is to understand the roles of indexing lists and tuples. Often the two are treated the same, but in numpy
indexing, tuples, list and arrays convey different information.
In [1]: a = np.arange(12).reshape(3,4)
In [2]: t = np.array([(0,0),(1,1),(2,2)])
In [4]: a
Out[4]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
In [5]: t
Out[5]:
array([[0, 0],
[1, 1],
[2, 2]])
You tried:
In [6]: a[t]
Out[6]:
array([[[ 0, 1, 2, 3],
[ 0, 1, 2, 3]],
[[ 4, 5, 6, 7],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[ 8, 9, 10, 11]]])
So what's wrong with it? It ran, but selected a (3,2) array of rows of a
. That is, it applied t
to just the first dimension, effectively a[t, :]
. You want to index on all dimensions, some sort of a[t1, t2]
. That's the same as a[(t1,t2)]
- a tuple of indices.
In [10]: a[tuple(t[0])] # a[(0,0)]
Out[10]: 0
In [11]: a[tuple(t[1])] # a[(1,1)]
Out[11]: 5
In [12]: a[tuple(t[2])]
Out[12]: 10
or doing all at once:
In [13]: a[(t[:,0], t[:,1])]
Out[13]: array([ 0, 5, 10])
Another way to write it, is n
lists (or arrays), one for each dimension:
In [14]: a[[0,1,2],[0,1,2]]
Out[14]: array([ 0, 5, 10])
In [18]: tuple(t.T)
Out[18]: (array([0, 1, 2]), array([0, 1, 2]))
In [19]: a[tuple(t.T)]
Out[19]: array([ 0, 5, 10])
More generally, in a[idx1, idx2]
array idx1
is broadcast against idx2
to produce a full selection array. Here the 2 arrays are 1d and match, the selection is your t
set of pairs. But the same principle applies to selecting a set of rows and columns, a[ [[0],[2]], [0,2,3] ]
.
Using the ideas in [10] and following, your get
could be sped up with:
In [20]: def get(a, t):
...: res = []
...: for ind in t:
...: res.append(a[tuple(ind)]) # index all dimensions at once
...: return res
...:
In [21]: get(a,t)
Out[21]: [0, 5, 10]
If t
really was a list of tuples (as opposed to an array built from them), your get could be:
In [23]: tl = [(0,0),(1,1),(2,2)]
In [24]: [a[ind] for ind in tl]
Out[24]: [0, 5, 10]
Upvotes: 1