Reputation: 5982
I am trying to access the activation values from my nodes in a layer.
l0_out = model.layers[0].output
print(l0_out)
print(type(l0_out))
Tensor("fc1_1/Relu:0", shape=(None, 10), dtype=float32)
<class 'tensorflow.python.framework.ops.Tensor'>
I've tried several different ways of eval()
and K.function
without success. I've also tried every method in this post Keras, How to get the output of each layer?
How can I work with this object?
MODEL Just using something everyone is familiar with.
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
iris_data = load_iris()
x = iris_data.data
y_ = iris_data.target.reshape(-1, 1)
encoder = OneHotEncoder(sparse=False)
y = encoder.fit_transform(y_)
train_x, test_x, train_y, test_y = train_test_split(x, y, test_size=0.20)
model = Sequential()
model.add(Dense(10, input_shape=(4,), activation='relu', name='fc1'))
model.add(Dense(10, activation='relu', name='fc2'))
model.add(Dense(3, activation='softmax', name='output'))
model.compile(optimizer=Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
print(model.summary())
# Train
model.fit(train_x, train_y, verbose=2, batch_size=5, epochs=200)
Upvotes: 0
Views: 1614
Reputation: 4475
Try to use K.function
and feed one batch of train_x
into the function.
from keras import backend as K
get_relu_output = K.function([model.layers[0].input], [model.layers[0].output])
relu_output = get_relu_output([train_x])
Upvotes: 1