Reputation: 562
I have a data frame with one column "Date," with values like "10/9/2019 23:59". I want to create two columns: one containing the day ("10/9/2019") and another containing hour ("23").
here is my code:
import pandas as pd
df = pd.read_csv('date.csv', names = ['Date'],
low_memory=False, encoding = 'utf-8-sig', header = 0)
cdf = pd.DataFrame(columns =['day' , 'hour'])
i = 0
for index, line in df.iterrows():
day = datetime.strptime(str(df["Date"]), '%m/%d/%Y %H:%M').date()
cdf.at[i , 'day'] = day
hour = datetime.strptime(str(df["Date"]), '%m/%d/%Y %H:%M').hour
cdf.at[i , 'hour'] = hour
i +=1
but I get this error:
ValueError Traceback (most recent call last)
<ipython-input-26-0550c19671cf> in <module>
3
4 for line in dd:
----> 5 day = datetime.strptime(str(df["Date"]), '%m/%d/%Y %H:%M').date()
6 cdf.at[i , 'day'] = day
7 hour = datetime.strptime(str(df["Date"]), '%m/%d/%Y %H:%M').hour
~\AppData\Local\Continuum\anaconda3\lib\_strptime.py in _strptime_datetime(cls, data_string, format)
575 """Return a class cls instance based on the input string and the
576 format string."""
--> 577 tt, fraction, gmtoff_fraction = _strptime(data_string, format)
578 tzname, gmtoff = tt[-2:]
579 args = tt[:6] + (fraction,)
~\AppData\Local\Continuum\anaconda3\lib\_strptime.py in _strptime(data_string, format)
357 if not found:
358 raise ValueError("time data %r does not match format %r" %
--> 359 (data_string, format))
360 if len(data_string) != found.end():
361 raise ValueError("unconverted data remains: %s" %
ValueError: time data '0 10/9/2019 23:59\n1 10/9/2019 23:59\n2 10/9/2019 23:59\n3 10/9/2019 23:59\n4 10/9/2019 23:59\n5 10/9/2019 23:59\n6 10/9/2019 23:59\n7 10/9/2019 23:59\n8 10/9/2019 23:59\n9 10/9/2019 23:59\n10 10/9/2019 23:59\n11 10/9/2019 23:59\n12 10/9/2019 23:59\n13 10/9/2019 23:59\n14 10/9/2019 23:59\n15 10/9/2019 23:59\n16 10/9/2019 23:58\n17 10/9/2019 23:58\n18 10/9/2019 23:58\n19 10/9/2019 23:58\n20 10/9/2019 23:58\n21 10/9/2019 23:58\n22 10/9/2019 23:58\n23 10/9/2019 23:58\n24 10/9/2019 23:58\n25 10/9/2019 23:58\n26 10/9/2019 23:58\n27 10/9/2019 23:58\n28 10/9/2019 23:58\n29 10/9/2019 23:58\n ... \n38584 10/7/2019 2:57\n38585 10/7/2019 2:43\n38586 10/7/2019 2:35\n38587 10/7/2019 2:33\n38588 10/7/2019 2:29\n38589 10/7/2019 2:22\n38590 10/7/2019 2:16\n38591 10/7/2019 2:01\n38592 10/7/2019 1:54\n38593 10/7/2019 1:52\n38594 10/7/2019 1:45\n38595 10/7/2019 1:42\n38596 10/7/2019 1:35\n38597 10/7/2019 1:30\n38598 10/7/2019 1:23\n38599 10/7/2019 1:23\n38600 10/7/2019 1:20\n38601 10/7/2019 1:15\n38602 10/7/2019 1:14\n38603 10/7/2019 1:13\n38604 10/7/2019 1:11\n38605 10/7/2019 1:05\n38606 10/7/2019 0:52\n38607 10/7/2019 0:42\n38608 10/7/2019 0:29\n38609 10/7/2019 0:19\n38610 10/7/2019 0:17\n38611 10/7/2019 0:14\n38612 10/7/2019 0:06\n38613 10/7/2019 0:02\nName: Date, Length: 38614, dtype: object' does not match format '%m/%d/%Y %H:%M'
Here's a link to my data.
Upvotes: 1
Views: 147
Reputation: 7399
You can easily do it in this way:
Example frame:
Date vals
0 2000-01-01 00:00:00 0.000000
1 2000-01-01 00:01:00 0.000031
2 2000-01-01 00:02:00 0.000063
3 2000-01-01 00:03:00 0.000094
4 2000-01-01 00:04:00 0.000126
Date
column is in datetime64[ns]
.You can convert your date column using df["Date"] = pd.to_datetime(df["Date"])
if dates
is string
or object
or any dtype which is not datetime
df["day"] = df["Date"].dt.date
df["hour"] = df["Date"].dt.hour
Upvotes: 2
Reputation: 1488
On read_csv()
, specify parse_dates='Date'
.
With that, you can then obtain the columns by doing:
df['day'] = df['Date'].dt.date
df['hour'] = df['Date'].dt.hour
EDIT1:
Realized you don't have header on input file. So instead of specifying parse_dates
on read_csv()
, you could convert the date column to datetime by:
df['Date'] = pd.to_datetime(df['Date'])
Hope this helps!
Upvotes: 2