Reputation: 9665
Based on the data frame
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randint(0,100,size=(2, 6)), columns=list('ABCDEF'))
print(df)
A B C D E F
0 82 63 71 74 71 27
1 90 9 74 35 38 43
how can I calculate the mean for each disjoint group of three columns, such that the resulting data frame looks like
meanABC meanDEF
0 72 57.33
1 57.66 38.66
?
Upvotes: 2
Views: 35
Reputation: 763
try the below hope this helps:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randint(0,100,size=(2, 6)), columns=list('ABCDEF'))
print(df)
Ouput will be :
A B C D E F
0 2 89 68 48 13 17
1 43 9 98 9 18 94
Now follow the steps:
columns = list(df.columns)
new_df = pd.DataFrame()
for i in range(0,len(columns),3):
new_df['mean'+"".join(columns[i:i+3])] = df[columns[i:i+3]].mean(axis=1)
Ouput will be :
meanABC meanDEF
0 53.0 26.000000
1 50.0 40.333333
Upvotes: 2
Reputation: 863751
Idea is create MultiIndex
first, then get new columns names for rename
and last is possible use mean
by second level of MultiIndex
:
np.random.seed(2019)
df = pd.DataFrame(np.random.randint(0,100,size=(2, 6)), columns=list('ABCDEF'))
print(df)
A B C D E F
0 72 31 37 88 62 24
1 29 15 12 16 48 71
df.columns = [df.columns, np.arange(len(df.columns)) // 3]
c = 'mean' + df.columns.to_frame().groupby(1)[0].apply(''.join)
print (c)
1
0 meanABC
1 meanDEF
Name: 0, dtype: object
df = df.mean(axis=1, level=1).rename(columns=c)
print (df)
meanABC meanDEF
0 46.666667 58.0
1 18.666667 45.0
Upvotes: 2