Reputation: 382
I am trying to find a substring across all columns of my spark dataframe using PySpark. I currently know how to search for a substring through one column using filter and contains:
df.filter(df.col_name.contains('substring'))
How do I extend this statement, or utilize another, to search through multiple columns for substring matches?
Upvotes: 1
Views: 1830
Reputation: 382
You can search through all columns and fill next dataframe and union results, like this:
columns = ["language", "else"]
data = [
("Java", "Python"),
("Python", "100000"),
("Scala", "3000"),
]
df = spark.createDataFrame(data).toDF(*columns)
df.cache()
df.show()
schema = df.schema
df2 = spark.createDataFrame(data=[], schema=schema)
for col in df.columns:
df2 = df2.unionByName(df.filter(df[col].like("%Python%")))
df2.show()
+--------+------+
|language| else|
+--------+------+
| Python|100000|
| Java|Python|
+--------+------+
Result will contain first 2 rows, because they have value 'Python' in some of the columns.
Upvotes: 1
Reputation: 7399
You can generalize the statement the filter in one go:
from pyspark.sql.functions import col, count, when
# Converts all unmatched filters to NULL and drops them.
df = df.select([when(col(c).contains('substring'), col(c)).alias(c) for c in df.columns]).na.drop()
OR
You can simply loop over the columns and apply the same filter:
for col in df.columns:
df = df.filter(df[col].contains("substring"))
Upvotes: 3