Reputation: 147
The data:
index = [('A', 'aa', 'aaa'),
('A', 'aa', 'aab'),
('B', 'bb', 'bbb'),
('B', 'bb', 'bbc'),
('C', 'cc', 'ccc')
]
values = [0.07, 0.04, 0.04, 0.06, 0.07]
s = pd.Series(data=values, index=pd.MultiIndex.from_tuples(index))
s
A aa aaa 0.07
aab 0.04
B bb bbb 0.04
bbc 0.06
C cc ccc 0.07
To get a mean of first two levels is easy:
s.mean(level=[0,1])
Result:
A aa 0.055
B bb 0.050
C cc 0.070
But to get a count on first two levels does not work the same:
#s.count(level=[0,1]) # does not work
I can get around with:
s.reset_index().groupby(['level_0', 'level_1']).size()
level_0 level_1
A aa 2
B bb 2
C cc 1
But there must be a cleaner way to get the same result? Am I missing something obvious?
Upvotes: 0
Views: 952
Reputation: 862761
It seems bug, you can use:
print (s.groupby(level=[0,1]).size())
#with exclude NaNs
#print (s.groupby(level=[0,1]).count())
A aa 2
B bb 2
C cc 1
dtype: int64
Upvotes: 3