Reputation: 65
I try to obtain percentages grouping values regarding one variable.
For this I used sapply
to obtain the percentage of each column regarding another one, but I dont know how to group these values by type (another variable)
x <- data.frame("A" = c(0,0,1,1,1,1,1), "B" = c(0,1,0,1,0,1,1), "C" = c(1,0,1,1,0,0,1),
"type" = c("x","x","x","y","y","y","x"), "yes" = c(0,0,1,1,0,1,1))
x
A B C type yes
1 0 0 1 x 0
2 0 1 0 x 0
3 1 0 1 x 1
4 1 1 1 y 1
5 1 0 0 y 0
6 1 1 0 y 1
7 1 1 1 x 1
I need to obtaing the next value (percentage): A==1&yes==1/A==1, and for this I use the next code:
result <- as.data.frame(sapply(x[,1:3],
function(i) (sum(i & x$yes)/sum(i))*100))
result
sapply(x[, 1:3], function(i) (sum(i & x$yes)/sum(i)) * 100)
A 80
B 75
C 75
Now I need to obtain the same math operation but taking into account the varible "type". It means, obtaing the same percentage but discriminating it by type. So, my expected table was:
type sapply(x[, 1:3], function(i) (sum(i & x$yes)/sum(i)) * 100)
A x 40
A y 40
B x 25
B y 50
C x 50
C y 25
In the example it's possible to observe that, by letters, the percentage sum is the same value that the obtained in the first result, just here is discriminated by type. thanks a lot.
Upvotes: 0
Views: 45
Reputation: 1364
You can do the following using data.table:
Code
setDT(df)
cols = c('A', 'B', 'C')
mat = df[yes == 1, lapply(.SD, function(x){
100 * sum(x)/df[, lapply(.SD, sum), .SDcols = cols][[substitute(x)]]
# Here, the numerator is sum(x | yes == 1) for x == columns A, B, C
# If we look at the denominator, it equals sum(x) for x == columns A, B, C
# The reason why we need to apply substitute(x) is because df[, lapply(.SD, sum)]
# generates a list of column sums, i.e. list(A = sum(A), B = sum(B), ...).
# Hence, for each x in the column names we must subset the list above using [[substitute(x)]]
# Ultimately, the operation equals sum(x | yes == 1)/sum(x) for A, B, C.
}), .(type), .SDcols = cols]
# '.(type)' simply means that we apply this for each type group,
# i.e. once for x and once for y, for each ABC column.
# The dot is just shorthand for 'list()'.
# .SDcols assigns the subset that I want to apply my lapply statement onto.
Result
> mat
type A B C
1: x 40 25 50
2: y 40 50 25
Long format (your example)
> melt(mat)
type variable value
1: x A 40
2: y A 40
3: x B 25
4: y B 50
5: x C 50
6: y C 25
Data
df <- data.frame("A" = c(0,0,1,1,1,1,1), "B" = c(0,1,0,1,0,1,1), "C" = c(1,0,1,1,0,0,1),
"type" = c("x","x","x","y","y","y","x"), "yes" = c(0,0,1,1,0,1,1))
Upvotes: 1