Reputation: 344
I have the following dataframe where I would like to print the unique values of the color
column.
df = pd.DataFrame({'colors': ['green', 'green', 'purple', ['yellow , red'], 'orange'], 'names': ['Terry', 'Nor', 'Franck', 'Pete', 'Agnes']})
Output:
colors names
0 green Terry
1 green Nor
2 purple Franck
3 [yellow , red] Pete
4 orange Agnes
df.colors.unique()
would work fine if there wasn't the [yellow , red]
row. As it is I keep getting the TypeError: unhashable type: 'list'
error which is understandable.
Is there a way to still get the unique values without taking this row into account?
I tried the followings but none worked:
df = df[~df.colors.str.contains(',', na=False)] # Nothing happens
df = df[~df.colors.str.contains('[', na=False)] # Output: error: unterminated character set at position 0
df = df[~df.colors.str.contains(']', na=False)] # Nothing happens
Upvotes: 5
Views: 4588
Reputation: 528
The input specified had a string which was a list(as specified by the poster), hence converted into a list of strings.
# Required Import
from ast import literal_eval
df = pd.DataFrame({
'colors': ['green', 'green', 'purple', "['yellow' , 'red']", 'orange'],
'names': ['Terry', 'Nor', 'Franck', 'Pete', 'Agnes']
})
Literal eval in order to covert string to actual list only where there is a list as string
list_records = df.colors.str.contains('[', na=False, regex=False)
df.loc[list_records, 'colors'] = df.loc[list_records, 'colors'].apply(literal_eval)
Works with pandas >= 0.25
df.explode('colors')['colors'].unique()
Gives
['green', 'purple', 'yellow', 'red', 'orange']
Upvotes: 1
Reputation: 12018
Assuming each of the values in your dataframe are important, here's a technique I frequently use to "unpack lists":
import re
def unlock_list_from_string(string, delim=','):
"""
lists are stored as strings (in csv files) ex. '[1,2,3]'
this function unlocks that list
"""
if type(string)!=str:
return string
# remove brackets
clean_string = re.sub('\[|\]', '', string)
unlocked_string = clean_string.split(delim)
unlocked_list = [x.strip() for x in unlocked_string]
return unlocked_list
all_colors_nested = df['colors'].apply(unlock_list_from_string)
# unnest
all_colors = [x for y in all_colors_nested for x in y ]
print(all_colors)
# ['green', 'green', 'purple', 'yellow', 'red', 'orange']
Upvotes: 1
Reputation: 862661
If values are lists check it by isinstance
method:
#changed sample data
df = pd.DataFrame({'colors': ['green', 'green', 'purple', ['yellow' , 'red'], 'orange'],
'names': ['Terry', 'Nor', 'Franck', 'Pete', 'Agnes']})
df = df[~df.colors.map(lambda x : isinstance(x, list))]
print (df)
colors names
0 green Terry
1 green Nor
2 purple Franck
4 orange Agnes
Your solution should be changed with casting to strings and regex=False
parameter:
df = df[~df.colors.astype(str).str.contains('[', na=False, regex=False)]
print (df)
colors names
0 green Terry
1 green Nor
2 purple Franck
4 orange Agnes
Also if want all unique values included lists for pandas 0.25+:
s = df.colors.map(lambda x : x if isinstance(x, list) else [x]).explode().unique().tolist()
print (s)
['green', 'purple', 'yellow', 'red', 'orange']
Upvotes: 3
Reputation: 323236
Let us using type
df.colors.apply(lambda x : type(x)!=list)
0 True
1 True
2 True
3 False
4 True
Name: colors, dtype: bool
Upvotes: 2